HOG-Diff: Higher-Order Guided Diffusion for Graph Generation
- URL: http://arxiv.org/abs/2502.04308v1
- Date: Thu, 06 Feb 2025 18:51:14 GMT
- Title: HOG-Diff: Higher-Order Guided Diffusion for Graph Generation
- Authors: Yiming Huang, Tolga Birdal,
- Abstract summary: Graph generation is a critical yet challenging task as empirical analyses require a deep understanding of complex, non-Euclidean structures.
We propose a novel Higher-order Guided Diffusion model that follows a coarse-to-fine generation curriculum and is guided by higher-order information.
Our model exhibits a stronger theoretical guarantee than classical diffusion frameworks.
- Score: 16.879154374481235
- License:
- Abstract: Graph generation is a critical yet challenging task as empirical analyses require a deep understanding of complex, non-Euclidean structures. Although diffusion models have recently made significant achievements in graph generation, these models typically adapt from the frameworks designed for image generation, making them ill-suited for capturing the topological properties of graphs. In this work, we propose a novel Higher-order Guided Diffusion (HOG-Diff) model that follows a coarse-to-fine generation curriculum and is guided by higher-order information, enabling the progressive generation of plausible graphs with inherent topological structures. We further prove that our model exhibits a stronger theoretical guarantee than classical diffusion frameworks. Extensive experiments on both molecular and generic graph generation tasks demonstrate that our method consistently outperforms or remains competitive with state-of-the-art baselines. Our code is available at https://github.com/Yiminghh/HOG-Diff.
Related papers
- SeaDAG: Semi-autoregressive Diffusion for Conditional Directed Acyclic Graph Generation [83.52157311471693]
We introduce SeaDAG, a semi-autoregressive diffusion model for conditional generation of Directed Acyclic Graphs (DAGs)
Unlike conventional autoregressive generation that lacks a global graph structure view, our method maintains a complete graph structure at each diffusion step.
We explicitly train the model to learn graph conditioning with a condition loss, which enhances the diffusion model's capacity to generate realistic DAGs.
arXiv Detail & Related papers (2024-10-21T15:47:03Z) - IFH: a Diffusion Framework for Flexible Design of Graph Generative Models [53.219279193440734]
Graph generative models can be classified into two prominent families: one-shot models, which generate a graph in one go, and sequential models, which generate a graph by successive additions of nodes and edges.
This paper proposes a graph generative model, called Insert-Fill-Halt (IFH), that supports the specification of a sequentiality degree.
arXiv Detail & Related papers (2024-08-23T16:24:40Z) - Advancing Graph Generation through Beta Diffusion [49.49740940068255]
Graph Beta Diffusion (GBD) is a generative model specifically designed to handle the diverse nature of graph data.
We propose a modulation technique that enhances the realism of generated graphs by stabilizing critical graph topology.
arXiv Detail & Related papers (2024-06-13T17:42:57Z) - GraphRCG: Self-Conditioned Graph Generation [78.69810678803248]
We propose a novel self-conditioned graph generation framework designed to explicitly model graph distributions.
Our framework demonstrates superior performance over existing state-of-the-art graph generation methods in terms of graph quality and fidelity to training data.
arXiv Detail & Related papers (2024-03-02T02:28:20Z) - Hyperbolic Graph Diffusion Model [24.049660417511074]
We propose a novel graph generation method called, Hyperbolic Graph Diffusion Model (HGDM)
HGDM consists of an auto-encoder to encode nodes into successive hyperbolic embeddings, and a DM that operates in the hyperbolic latent space.
Experiments show that HGDM achieves better performance in generic graph and molecule generation benchmarks, with a $48%$ improvement in the quality of graph generation with highly hierarchical structures.
arXiv Detail & Related papers (2023-06-13T08:22:18Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - Generative Diffusion Models on Graphs: Methods and Applications [50.44334458963234]
Diffusion models, as a novel generative paradigm, have achieved remarkable success in various image generation tasks.
Graph generation is a crucial computational task on graphs with numerous real-world applications.
arXiv Detail & Related papers (2023-02-06T06:58:17Z) - Conditional Diffusion Based on Discrete Graph Structures for Molecular
Graph Generation [32.66694406638287]
We propose a Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation.
Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through differential equations (SDE)
We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states.
arXiv Detail & Related papers (2023-01-01T15:24:15Z) - SCGG: A Deep Structure-Conditioned Graph Generative Model [9.046174529859524]
A conditional deep graph generation method called SCGG considers a particular type of structural conditions.
The architecture of SCGG consists of a graph representation learning network and an autoregressive generative model, which is trained end-to-end.
Experimental results on both synthetic and real-world datasets demonstrate the superiority of our method compared with state-of-the-art baselines.
arXiv Detail & Related papers (2022-09-20T12:33:50Z) - A Systematic Survey on Deep Generative Models for Graph Generation [16.546379779385575]
Graph generation considers learning the distributions of given graphs and generating more novel graphs.
Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs.
This article provides an extensive overview of literature in the field of deep generative models for graph generation.
arXiv Detail & Related papers (2020-07-13T20:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.