Factorized Implicit Global Convolution for Automotive Computational Fluid Dynamics Prediction
- URL: http://arxiv.org/abs/2502.04317v1
- Date: Thu, 06 Feb 2025 18:57:57 GMT
- Title: Factorized Implicit Global Convolution for Automotive Computational Fluid Dynamics Prediction
- Authors: Chris Choy, Alexey Kamenev, Jean Kossaifi, Max Rietmann, Jan Kautz, Kamyar Azizzadenesheli,
- Abstract summary: We propose Factorized Implicit Global Convolution (FIGConv), a novel architecture that efficiently solves CFD problems for very large 3D meshes.
FIGConv achieves quadratic complexity $O(N2)$, a significant improvement over existing 3D neural CFD models.
We validate our approach on the industry-standard Ahmed body dataset and the large-scale DrivAerNet dataset.
- Score: 52.32698071488864
- License:
- Abstract: Computational Fluid Dynamics (CFD) is crucial for automotive design, requiring the analysis of large 3D point clouds to study how vehicle geometry affects pressure fields and drag forces. However, existing deep learning approaches for CFD struggle with the computational complexity of processing high-resolution 3D data. We propose Factorized Implicit Global Convolution (FIGConv), a novel architecture that efficiently solves CFD problems for very large 3D meshes with arbitrary input and output geometries. FIGConv achieves quadratic complexity $O(N^2)$, a significant improvement over existing 3D neural CFD models that require cubic complexity $O(N^3)$. Our approach combines Factorized Implicit Grids to approximate high-resolution domains, efficient global convolutions through 2D reparameterization, and a U-shaped architecture for effective information gathering and integration. We validate our approach on the industry-standard Ahmed body dataset and the large-scale DrivAerNet dataset. In DrivAerNet, our model achieves an $R^2$ value of 0.95 for drag prediction, outperforming the previous state-of-the-art by a significant margin. This represents a 40% improvement in relative mean squared error and a 70% improvement in absolute mean squared error over previous methods.
Related papers
- ArchComplete: Autoregressive 3D Architectural Design Generation with Hierarchical Diffusion-Based Upsampling [0.0]
ArchComplete is a two-stage voxel-based 3D generative pipeline consisting of a vector-quantised model.
Key to our pipeline is (i) learning a contextually rich codebook of local patch embeddings, optimised alongside a 2.5D perceptual loss.
ArchComplete autoregressively generates models at the resolution of $643$ and progressively refines them up to $5123$, with voxel sizes as small as $ approx 9textcm$.
arXiv Detail & Related papers (2024-12-23T20:13:27Z) - ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
Existing methods prioritize higher accuracy to cater to the demands of these tasks.
We introduce a series of targeted improvements for 3D semantic occupancy prediction and flow estimation.
Our purelytemporalal architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy.
arXiv Detail & Related papers (2024-11-12T11:32:56Z) - Deep Neural Implicit Representation of Accessibility for Multi-Axis Manufacturing [0.0]
We develop an implicit representation of the collision measure field via deep neural networks (DNNs)
We show that our approach is able to accurately interpolate the collision measure from a sparse sampling of rotations, and can represent the collision measure field with a small memory footprint.
arXiv Detail & Related papers (2024-08-30T06:27:25Z) - Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations [1.1932047172700866]
This paper presents a methodology to learn surrogate models of steady state fluid dynamics simulations on meshed domains.
The proposed models can be applied directly to unstructured domains for different flow conditions.
Remarkably, the method can perform inference five order of magnitude faster than the high fidelity solver on the RANS transonic airfoil dataset.
arXiv Detail & Related papers (2024-07-29T11:48:44Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - DiffComplete: Diffusion-based Generative 3D Shape Completion [114.43353365917015]
We introduce a new diffusion-based approach for shape completion on 3D range scans.
We strike a balance between realism, multi-modality, and high fidelity.
DiffComplete sets a new SOTA performance on two large-scale 3D shape completion benchmarks.
arXiv Detail & Related papers (2023-06-28T16:07:36Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature correspondences across multiple frames.
We show that our approach significantly improves accuracy, scalability, and robustness against noise.
arXiv Detail & Related papers (2020-06-15T09:15:54Z) - DeepCFD: Efficient Steady-State Laminar Flow Approximation with Deep
Convolutional Neural Networks [5.380828749672078]
DeepCFD is a convolutional neural network (CNN) based model that efficiently approximates solutions for the problem of non-uniform steady laminar flows.
Using DeepCFD, we found a speedup of up to 3 orders of magnitude compared to the standard CFD approach at a cost of low error rates.
arXiv Detail & Related papers (2020-04-19T12:00:37Z) - Generative Multi-Stream Architecture For American Sign Language
Recognition [15.717424753251674]
Training on datasets with low feature-richness for complex applications limit optimal convergence below human performance.
We propose a generative multistream architecture, eliminating the need for additional hardware with the intent to improve feature convergence without risking impracticability.
Our methods have achieved 95.62% validation accuracy with a variance of 1.42% from training, outperforming past models by 0.45% in validation accuracy and 5.53% in variance.
arXiv Detail & Related papers (2020-03-09T21:04:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.