TripNet: Learning Large-scale High-fidelity 3D Car Aerodynamics with Triplane Networks
- URL: http://arxiv.org/abs/2503.17400v1
- Date: Wed, 19 Mar 2025 17:30:57 GMT
- Title: TripNet: Learning Large-scale High-fidelity 3D Car Aerodynamics with Triplane Networks
- Authors: Qian Chen, Mohamed Elrefaie, Angela Dai, Faez Ahmed,
- Abstract summary: TripNet is a machine learning-based framework leveraging triplane representations to predict the outcomes of high-fidelity CFD simulations.<n>TripNet achieves state-of-the-art performance in coefficient drag prediction, surface field estimation, and full 3D flow field simulations of industry-standard car designs.
- Score: 27.577307360710545
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Computational Fluid Dynamics (CFD) simulations are essential in product design, providing insights into fluid behavior around complex geometries in aerospace and automotive applications. However, high-fidelity CFD simulations are computationally expensive, making rapid design iterations challenging. To address this, we propose TripNet, Triplane CFD Network, a machine learning-based framework leveraging triplane representations to predict the outcomes of large-scale, high-fidelity CFD simulations with significantly reduced computation cost. Our method encodes 3D geometry into compact yet information-rich triplane features, maintaining full geometry fidelity and enabling accurate aerodynamic predictions. Unlike graph- and point cloud-based models, which are inherently discrete and provide solutions only at the mesh nodes, TripNet allows the solution to be queried at any point in the 3D space. Validated on high-fidelity DrivAerNet and DrivAerNet++ car aerodynamics datasets, TripNet achieves state-of-the-art performance in drag coefficient prediction, surface field estimation, and full 3D flow field simulations of industry-standard car designs. By utilizing a shared triplane backbone across multiple tasks, our approach offers a scalable, accurate, and efficient alternative to traditional CFD solvers.
Related papers
- DrivAer Transformer: A high-precision and fast prediction method for vehicle aerodynamic drag coefficient based on the DrivAerNet++ dataset [1.184330339427731]
This study proposes a point cloud learning framework called DrivAer Transformer.
The DAT structure uses the DrivAerNet++ dataset, which contains high-fidelity CFD data of industrial-standard 3D vehicle shapes.
The framework is expected to accelerate the vehicle design process and improve development efficiency.
arXiv Detail & Related papers (2025-04-11T02:50:38Z) - 3D Neural Operator-Based Flow Surrogates around 3D geometries: Signed Distance Functions and Derivative Constraints [3.100300350494905]
computational cost of high-fidelity 3D flow simulations remains a significant challenge.<n>We evaluate Deep Operator Networks (DeepONet) and Geometric-DeepONet, a variant that incorporates geometry information via signed distance functions (SDFs)<n>Our results show that Geometric-DeepONet improves boundary-layer accuracy by up to 32% compared to standard DeepONet.
arXiv Detail & Related papers (2025-03-21T16:40:48Z) - Factorized Implicit Global Convolution for Automotive Computational Fluid Dynamics Prediction [52.32698071488864]
We propose Factorized Implicit Global Convolution (FIGConv), a novel architecture that efficiently solves CFD problems for very large 3D meshes.<n>FIGConv achieves quadratic complexity $O(N2)$, a significant improvement over existing 3D neural CFD models.<n>We validate our approach on the industry-standard Ahmed body dataset and the large-scale DrivAerNet dataset.
arXiv Detail & Related papers (2025-02-06T18:57:57Z) - A Geometry-Aware Message Passing Neural Network for Modeling Aerodynamics over Airfoils [61.60175086194333]
aerodynamics is a key problem in aerospace engineering, often involving flows interacting with solid objects such as airfoils.<n>Here, we consider modeling of incompressible flows over solid objects, wherein geometric structures are a key factor in determining aerodynamics.<n>To effectively incorporate geometries, we propose a message passing scheme that efficiently and expressively integrates the airfoil shape with the mesh representation.<n>These design choices lead to a purely data-driven machine learning framework known as GeoMPNN, which won the Best Student Submission award at the NeurIPS 2024 ML4CFD Competition, placing 4th overall.
arXiv Detail & Related papers (2024-12-12T16:05:39Z) - WindsorML: High-Fidelity Computational Fluid Dynamics Dataset For Automotive Aerodynamics [1.7258674811482855]
This paper presents a new open-source high-fidelity dataset for Machine Learning (ML) containing 355 geometric variants of the Windsor body.
To the authors knowledge, this represents the first, large-scale high-fidelity CFD dataset for the Windsor body with a permissive open-source license (CC-BY-SA)
arXiv Detail & Related papers (2024-07-27T18:33:10Z) - DrivAerNet++: A Large-Scale Multimodal Car Dataset with Computational Fluid Dynamics Simulations and Deep Learning Benchmarks [25.00264553520033]
DrivAerNet++ comprises 8,000 diverse car designs modeled with high-fidelity computational fluid dynamics (CFD) simulations.<n>The dataset includes diverse car configurations such as fastback, notchback, and estateback, with different underbody and wheel designs to represent both internal combustion engines and electric vehicles.<n>This dataset supports a wide array of machine learning applications including data-driven design optimization, generative modeling, surrogate model training, CFD simulation acceleration, and geometric classification.
arXiv Detail & Related papers (2024-06-13T23:19:48Z) - DrivAerNet: A Parametric Car Dataset for Data-Driven Aerodynamic Design and Prediction [27.313594069397862]
This study introduces DrivAerNet, a large-scale high-fidelity CFD dataset of 3D industry-standard car shapes, and RegDGCNN, a dynamic graph convolutional neural network model.<n>Together, DrivAerNet and RegDGCNN promise to accelerate the car design process and contribute to the development of more efficient cars.
arXiv Detail & Related papers (2024-03-12T20:02:39Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Fast-SNARF: A Fast Deformer for Articulated Neural Fields [92.68788512596254]
We propose a new articulation module for neural fields, Fast-SNARF, which finds accurate correspondences between canonical space and posed space.
Fast-SNARF is a drop-in replacement in to our previous work, SNARF, while significantly improving its computational efficiency.
Because learning of deformation maps is a crucial component in many 3D human avatar methods, we believe that this work represents a significant step towards the practical creation of 3D virtual humans.
arXiv Detail & Related papers (2022-11-28T17:55:34Z) - Deep Active Surface Models [60.027353171412216]
Active Surface Models have a long history of being useful to model complex 3D surfaces but only Active Contours have been used in conjunction with deep networks.
We introduce layers that implement them that can be integrated seamlessly into Graph Convolutional Networks to enforce sophisticated smoothness priors.
arXiv Detail & Related papers (2020-11-17T18:48:28Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNs are powerful but it would be computationally costly to directly apply convolutions on point data after voxelizing the entire point clouds to a dense regular 3D grid.
We propose a novel and principled Local Grid Rendering (LGR) operation to render the small neighborhood of a subset of input points into a low-resolution 3D grid independently.
We validate LGR-Net for 3D object detection on the challenging ScanNet and SUN RGB-D datasets.
arXiv Detail & Related papers (2020-07-04T13:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.