Speak Easy: Eliciting Harmful Jailbreaks from LLMs with Simple Interactions
- URL: http://arxiv.org/abs/2502.04322v1
- Date: Thu, 06 Feb 2025 18:59:02 GMT
- Title: Speak Easy: Eliciting Harmful Jailbreaks from LLMs with Simple Interactions
- Authors: Yik Siu Chan, Narutatsu Ri, Yuxin Xiao, Marzyeh Ghassemi,
- Abstract summary: Large language models (LLMs) remain vulnerable to jailbreak attacks that elicit harmful behavior.
Our work reveals a critical yet often overlooked vulnerability: Malicious users can easily exploit common interaction patterns for harmful intentions.
- Score: 11.32190215797298
- License:
- Abstract: Despite extensive safety alignment efforts, large language models (LLMs) remain vulnerable to jailbreak attacks that elicit harmful behavior. While existing studies predominantly focus on attack methods that require technical expertise, two critical questions remain underexplored: (1) Are jailbroken responses truly useful in enabling average users to carry out harmful actions? (2) Do safety vulnerabilities exist in more common, simple human-LLM interactions? In this paper, we demonstrate that LLM responses most effectively facilitate harmful actions when they are both actionable and informative--two attributes easily elicited in multi-step, multilingual interactions. Using this insight, we propose HarmScore, a jailbreak metric that measures how effectively an LLM response enables harmful actions, and Speak Easy, a simple multi-step, multilingual attack framework. Notably, by incorporating Speak Easy into direct request and jailbreak baselines, we see an average absolute increase of 0.319 in Attack Success Rate and 0.426 in HarmScore in both open-source and proprietary LLMs across four safety benchmarks. Our work reveals a critical yet often overlooked vulnerability: Malicious users can easily exploit common interaction patterns for harmful intentions.
Related papers
- Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.
We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.
Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - MRJ-Agent: An Effective Jailbreak Agent for Multi-Round Dialogue [35.7801861576917]
Large Language Models (LLMs) demonstrate outstanding performance in their reservoir of knowledge and understanding capabilities.
LLMs have been shown to be prone to illegal or unethical reactions when subjected to jailbreak attacks.
We propose a novel multi-round dialogue jailbreaking agent, emphasizing the importance of stealthiness in identifying and mitigating potential threats to human values.
arXiv Detail & Related papers (2024-11-06T10:32:09Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.
It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.
Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - LLMs can be Dangerous Reasoners: Analyzing-based Jailbreak Attack on Large Language Models [21.02295266675853]
Existing jailbreak methods suffer from two main limitations: reliance on complicated prompt engineering and iterative optimization.
We propose an efficient jailbreak attack method, Analyzing-based Jailbreak (ABJ), which leverages the advanced reasoning capability of LLMs to autonomously generate harmful content.
arXiv Detail & Related papers (2024-07-23T06:14:41Z) - Safe Unlearning: A Surprisingly Effective and Generalizable Solution to Defend Against Jailbreak Attacks [89.54736699767315]
We conjecture that directly unlearn the harmful knowledge in the LLM can be a more effective way to defend against jailbreak attacks.
Our solution reduced the Attack Success Rate (ASR) in Vicuna-7B from 82.6% to 7.7% on out-of-distribution (OOD) harmful questions.
This significantly outperforms Llama2-7B-Chat, which is fine-tuned on about 0.1M safety alignment samples but still has an ASR of 21.9% even under the help of an additional safety system prompt.
arXiv Detail & Related papers (2024-07-03T07:14:05Z) - WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models [66.34505141027624]
We introduce WildTeaming, an automatic LLM safety red-teaming framework that mines in-the-wild user-chatbot interactions to discover 5.7K unique clusters of novel jailbreak tactics.
WildTeaming reveals previously unidentified vulnerabilities of frontier LLMs, resulting in up to 4.6x more diverse and successful adversarial attacks.
arXiv Detail & Related papers (2024-06-26T17:31:22Z) - Enhancing Jailbreak Attack Against Large Language Models through Silent Tokens [22.24239212756129]
Existing jailbreaking attacks require either human experts or leveraging complicated algorithms to craft prompts.
We introduce BOOST, a simple attack that leverages only the eos tokens.
Our findings uncover how fragile an LLM is against jailbreak attacks, motivating the development of strong safety alignment approaches.
arXiv Detail & Related papers (2024-05-31T07:41:03Z) - Multilingual Jailbreak Challenges in Large Language Models [96.74878032417054]
In this study, we reveal the presence of multilingual jailbreak challenges within large language models (LLMs)
We consider two potential risky scenarios: unintentional and intentional.
We propose a novel textscSelf-Defense framework that automatically generates multilingual training data for safety fine-tuning.
arXiv Detail & Related papers (2023-10-10T09:44:06Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
We propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on large language models (LLMs)
Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs.
arXiv Detail & Related papers (2023-10-05T17:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.