論文の概要: CognArtive: Large Language Models for Automating Art Analysis and Decoding Aesthetic Elements
- arxiv url: http://arxiv.org/abs/2502.04353v1
- Date: Tue, 04 Feb 2025 18:08:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:59:10.255856
- Title: CognArtive: Large Language Models for Automating Art Analysis and Decoding Aesthetic Elements
- Title(参考訳): CognArtive: アート分析の自動化と美的要素のデコードのための大規模言語モデル
- Authors: Afshin Khadangi, Amir Sartipi, Igor Tchappi, Gilbert Fridgen,
- Abstract要約: 芸術は普遍言語であり、様々な方法で解釈できる。
大規模言語モデル (LLM) とマルチモーダル大規模言語モデル (MLLM) の可用性は,これらのモデルがアートワークの評価と解釈にどのように使用できるのかという疑問を提起する。
- 参考スコア(独自算出の注目度): 1.0579965347526206
- License:
- Abstract: Art, as a universal language, can be interpreted in diverse ways, with artworks embodying profound meanings and nuances. The advent of Large Language Models (LLMs) and the availability of Multimodal Large Language Models (MLLMs) raise the question of how these transformative models can be used to assess and interpret the artistic elements of artworks. While research has been conducted in this domain, to the best of our knowledge, a deep and detailed understanding of the technical and expressive features of artworks using LLMs has not been explored. In this study, we investigate the automation of a formal art analysis framework to analyze a high-throughput number of artworks rapidly and examine how their patterns evolve over time. We explore how LLMs can decode artistic expressions, visual elements, composition, and techniques, revealing emerging patterns that develop across periods. Finally, we discuss the strengths and limitations of LLMs in this context, emphasizing their ability to process vast quantities of art-related data and generate insightful interpretations. Due to the exhaustive and granular nature of the results, we have developed interactive data visualizations, available online https://cognartive.github.io/, to enhance understanding and accessibility.
- Abstract(参考訳): 普遍言語としてのアートは様々な方法で解釈され、深い意味とニュアンスを具現化したアートである。
LLM(Large Language Models)の出現とMLLM(Multimodal Large Language Models)の出現は、これらの変換モデルがアート作品の芸術的要素の評価と解釈にどのように使用できるのかという疑問を提起する。
この領域では研究が行われてきたが、私たちの知る限り、LLMを用いた美術品の技術的・表現的特徴の深い理解は行われていない。
本研究では,形式的美術分析フレームワークの自動化について検討し,高出力の美術品を迅速に分析し,そのパターンが時間とともにどのように進化するかを検討する。
LLMが芸術的表現、視覚的要素、構成、技法をデコードし、周期的に発達する新しいパターンを明らかにする方法について検討する。
最後に、この文脈におけるLLMの強みと限界について論じ、膨大な美術関連データを処理し、洞察に富んだ解釈を生成する能力を強調した。
結果の網羅的で粒度の細かい性質から,理解とアクセシビリティを高めるために,インタラクティブなデータ可視化(https://cognartive.github.io/)を開発した。
関連論文リスト
- Survey of different Large Language Model Architectures: Trends, Benchmarks, and Challenges [15.850548556536538]
大規模言語モデル(LLMs)は、自然言語の理解に精通したディープラーニングモデルのクラスである。
これらのモデルの先進的なサブセットであるMultimodal Large Language Models (MLLM)は、複数のデータモダリティを処理および解釈するためにLLM機能を拡張している。
本調査は,LLMの最近の進歩を概観する。
論文 参考訳(メタデータ) (2024-12-04T11:14:06Z) - GalleryGPT: Analyzing Paintings with Large Multimodal Models [64.98398357569765]
美術品の分析は、個人の審美性を豊かにし、批判的思考能力を促進することができる芸術鑑賞のための重要かつ基本的な技術である。
アートワークを自動解析する以前の作業は、主に分類、検索、その他の単純なタスクに焦点を当てており、AIの目標とは程遠い。
LLaVAアーキテクチャに基づいて微調整されたGalleryGPTと呼ばれる,絵画解析のための優れた大規模マルチモーダルモデルを提案する。
論文 参考訳(メタデータ) (2024-08-01T11:52:56Z) - LLaVA-Read: Enhancing Reading Ability of Multimodal Language Models [60.67899965748755]
両ビジュアルエンコーダとビジュアルテキストエンコーダを併用したマルチモーダル大規模言語モデルであるLLaVA-Readを提案する。
我々の研究は、ビジュアルテキスト理解は依然としてオープンな課題であり、将来のマルチモーダルシステムにとって効率的なビジュアルテキストエンコーダが不可欠であることを示唆している。
論文 参考訳(メタデータ) (2024-07-27T05:53:37Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - Explaining Multi-modal Large Language Models by Analyzing their Vision Perception [4.597864989500202]
本研究では,画像埋め込み成分に着目し,MLLMの解釈可能性を高める新しい手法を提案する。
オープンワールドのローカライゼーションモデルとMLLMを組み合わせることで、同じビジョンの埋め込みからテキストとオブジェクトのローカライゼーション出力を同時に生成できる新しいアーキテクチャを構築する。
論文 参考訳(メタデータ) (2024-05-23T14:24:23Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z) - The Revolution of Multimodal Large Language Models: A Survey [46.84953515670248]
MLLM(Multimodal Large Language Models)は、視覚とテキストのモダリティをシームレスに統合することができる。
本稿では,近年の視覚的MLLMのレビュー,アーキテクチャ選択,マルチモーダルアライメント戦略,トレーニング手法について述べる。
論文 参考訳(メタデータ) (2024-02-19T19:01:01Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
マルチモーダル出力を有効にした視覚理解のための新しいICLフレームワークを提案する。
まず、テキストと視覚的プロンプトの両方を量子化し、統一された表現空間に埋め込む。
次にデコーダのみのスパーストランスアーキテクチャを用いて生成モデリングを行う。
論文 参考訳(メタデータ) (2023-12-05T06:02:21Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
大規模言語モデルにおけるコンテキスト内学習を実現するためのフレームワークを提案する。
メタモデルは、カスタマイズされたデモからなる自己教師型プロンプトで学ぶことができる。
実験の結果、SINCは様々な視覚言語タスクにおいて勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-15T08:33:08Z) - Visually-Situated Natural Language Understanding with Contrastive
Reading Model and Frozen Large Language Models [24.456117679941816]
Contrastive Reading Model (Cream)は、Large Language Models (LLM)の言語画像理解能力を高めるために設計された、新しいニューラルネットワークである。
我々のアプローチは、視覚と言語理解のギャップを埋め、より洗練されたドキュメントインテリジェンスアシスタントの開発の道を開く。
論文 参考訳(メタデータ) (2023-05-24T11:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。