論文の概要: Hybrid Deep Learning Framework for Classification of Kidney CT Images: Diagnosis of Stones, Cysts, and Tumors
- arxiv url: http://arxiv.org/abs/2502.04367v1
- Date: Wed, 05 Feb 2025 08:38:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:57:14.698252
- Title: Hybrid Deep Learning Framework for Classification of Kidney CT Images: Diagnosis of Stones, Cysts, and Tumors
- Title(参考訳): キドニーCT画像分類のためのハイブリッドディープラーニングフレームワーク:石・嚢胞・腫瘍の診断
- Authors: Kiran Sharma, Ziya Uddin, Adarsh Wadal, Dhruv Gupta,
- Abstract要約: 本研究では,プレトレーニングされたResNet101とカスタムCNNを統合して腎臓CT画像の分類を行うハイブリッドディープラーニングモデルを提案する。
12,446枚のCT画像と高度な特徴マッピング技術のデータセットを使用して、ハイブリッドCNNモデルはスタンドアロンのResNet101より優れています。
- 参考スコア(独自算出の注目度): 1.3749490831384266
- License:
- Abstract: Medical image classification is a vital research area that utilizes advanced computational techniques to improve disease diagnosis and treatment planning. Deep learning models, especially Convolutional Neural Networks (CNNs), have transformed this field by providing automated and precise analysis of complex medical images. This study introduces a hybrid deep learning model that integrates a pre-trained ResNet101 with a custom CNN to classify kidney CT images into four categories: normal, stone, cyst, and tumor. The proposed model leverages feature fusion to enhance classification accuracy, achieving 99.73% training accuracy and 100% testing accuracy. Using a dataset of 12,446 CT images and advanced feature mapping techniques, the hybrid CNN model outperforms standalone ResNet101. This architecture delivers a robust and efficient solution for automated kidney disease diagnosis, providing improved precision, recall, and reduced testing time, making it highly suitable for clinical applications.
- Abstract(参考訳): 医用画像分類は、高度な計算技術を用いて疾患の診断と治療計画を改善する重要な研究分野である。
深層学習モデル、特に畳み込みニューラルネットワーク(CNN)は、複雑な医用画像の自動的かつ正確な解析を提供することで、この分野を変革した。
本研究では,プレトレーニングされたResNet101とカスタムCNNを統合し,腎臓CT像を正常,石,嚢胞,腫瘍の4つのカテゴリに分類するハイブリッドディープラーニングモデルを提案する。
提案モデルは特徴融合を利用して分類精度を高め、99.73%のトレーニング精度と100%のテスト精度を達成する。
12,446枚のCT画像と高度な特徴マッピング技術のデータセットを使用して、ハイブリッドCNNモデルはスタンドアロンのResNet101より優れています。
このアーキテクチャは、腎疾患の自動診断のための堅牢で効率的なソリューションを提供し、精度の向上、リコール、テスト時間の短縮を実現し、臨床応用に非常に適している。
関連論文リスト
- Advanced Hybrid Deep Learning Model for Enhanced Classification of Osteosarcoma Histopathology Images [0.0]
本研究は, 小児および思春期において最も多い骨癌である骨肉腫(OS)に焦点を当て, 腕と足の長い骨に影響を及ぼす。
我々は、OSの診断精度を向上させるために、畳み込みニューラルネットワーク(CNN)と視覚変換器(ViT)を組み合わせた新しいハイブリッドモデルを提案する。
このモデルは精度99.08%、精度99.10%、リコール99.28%、F1スコア99.23%を達成した。
論文 参考訳(メタデータ) (2024-10-29T13:54:08Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - A study on deep feature extraction to detect and classify Acute Lymphoblastic Leukemia (ALL) [0.0]
急性リンパ芽球性白血病(ALL)は、主に成人と小児に影響を及ぼす血液悪性腫瘍である。
本研究では、深い学習、特に畳み込みニューラルネットワーク(CNN)を用いて、ALLの検出と分類を行う。
87%の精度で、ResNet101モデルは最高の結果をもたらし、その後にDenseNet121とVGG19が続いた。
論文 参考訳(メタデータ) (2024-09-10T17:53:29Z) - Integrating Preprocessing Methods and Convolutional Neural Networks for
Effective Tumor Detection in Medical Imaging [0.0]
本研究では,畳み込みニューラルネットワーク(CNN)を用いた医用画像における腫瘍検出のための機械学習手法を提案する。
本研究は,腫瘍検出に関連する画像の特徴を高めるための前処理技術に焦点を当て,CNNモデルの開発と訓練を行った。
医用画像中の腫瘍を正確に検出する手法の有効性を実験的に検証した。
論文 参考訳(メタデータ) (2024-02-25T23:49:05Z) - Automated COVID-19 CT Image Classification using Multi-head Channel
Attention in Deep CNN [0.0]
新型コロナウイルスのCTスキャン自動分類のための新しい深層学習手法を提案する。
新しく設計されたチャネルアテンション機構と重み付きグローバル平均プールを組み込んだ改良型Xceptionモデルを提案する。
広く使われている新型コロナウイルスのCTスキャンデータセットの実験は96.99%の精度を示し、他の最先端技術よりも優れていることを示している。
論文 参考訳(メタデータ) (2023-07-31T16:44:06Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Brain Tumor Detection and Classification Using a New Evolutionary
Convolutional Neural Network [18.497065020090062]
この研究の目的は、健康な患者と不健康な患者を区別するために脳MRI画像を使用することである。
深層学習技術は近年、脳腫瘍をより正確に、堅牢に診断する方法として関心を喚起している。
論文 参考訳(メタデータ) (2022-04-26T13:20:42Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。