論文の概要: Beyond Interpolation: Extrapolative Reasoning with Reinforcement Learning and Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2502.04402v1
- Date: Thu, 06 Feb 2025 08:07:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:58:03.058351
- Title: Beyond Interpolation: Extrapolative Reasoning with Reinforcement Learning and Graph Neural Networks
- Title(参考訳): 補間を超えて:強化学習とグラフニューラルネットワークを用いた補間推論
- Authors: Niccolò Grillo, Andrea Toccaceli, Joël Mathys, Benjamin Estermann, Stefania Fresca, Roger Wattenhofer,
- Abstract要約: 本研究では, アーキテクチャの帰納バイアス, 異なる報酬システム, 逐次推論を実現する上での反復モデリングの役割に焦点をあてる。
これらの要素が、ますます複雑なパズルに対する外挿の成功にどのように貢献するかを示す。
- 参考スコア(独自算出の注目度): 18.982541044390384
- License:
- Abstract: Despite incredible progress, many neural architectures fail to properly generalize beyond their training distribution. As such, learning to reason in a correct and generalizable way is one of the current fundamental challenges in machine learning. In this respect, logic puzzles provide a great testbed, as we can fully understand and control the learning environment. Thus, they allow to evaluate performance on previously unseen, larger and more difficult puzzles that follow the same underlying rules. Since traditional approaches often struggle to represent such scalable logical structures, we propose to model these puzzles using a graph-based approach. Then, we investigate the key factors enabling the proposed models to learn generalizable solutions in a reinforcement learning setting. Our study focuses on the impact of the inductive bias of the architecture, different reward systems and the role of recurrent modeling in enabling sequential reasoning. Through extensive experiments, we demonstrate how these elements contribute to successful extrapolation on increasingly complex puzzles.These insights and frameworks offer a systematic way to design learning-based systems capable of generalizable reasoning beyond interpolation.
- Abstract(参考訳): 驚くべき進歩にもかかわらず、多くのニューラルアーキテクチャはトレーニング分布を超えて適切に一般化することができない。
このように、正しい一般化可能な方法で推論する学習は、機械学習における現在の基本的な課題の1つである。
この点に関して、論理パズルは学習環境を完全に理解し制御できるので、優れたテストベッドを提供する。
したがって、以前の未確認で、より大きく、より難しいパズルに対して、同じ基本ルールに従うパフォーマンスを評価することができる。
従来の手法はこのようなスケーラブルな論理構造を表現するのに苦労することが多いため、グラフベースの手法を用いてこれらのパズルをモデル化することを提案する。
そこで本研究では,提案モデルが強化学習環境で一般化可能な解を学習できる重要な要因について検討する。
本研究は, アーキテクチャの帰納バイアス, 異なる報酬システム, 逐次推論を実現する上での反復モデリングの役割に焦点をあてる。
より広範な実験を通じて、これらの要素が、ますます複雑なパズルに対する外挿の成功にどのように貢献するかを実証し、これらの洞察とフレームワークは、補間を超えた一般化可能な推論が可能な学習ベースシステムを設計するための体系的な方法を提供する。
関連論文リスト
- Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
ベンチマークはさまざまなバイアス、アーティファクト、リークに悩まされている。
モデルは、調査の不十分な障害モードのため、信頼できない振る舞いをする可能性がある。
因果関係はこれらの課題を体系的に解決するための 理想的な枠組みを提供します
論文 参考訳(メタデータ) (2025-02-07T17:01:37Z) - Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
グラフ学習の最近の進歩は、複雑な構造を持つデータを理解し分析する方法に革命をもたらした。
グラフニューラルネットワーク(GNN)、すなわちグラフ表現を学習するために設計されたニューラルネットワークアーキテクチャは、一般的なパラダイムとなっている。
本稿では,グラフ学習モデルに固有の近似と学習行動に関する理論的基礎とブレークスルーについて概説する。
論文 参考訳(メタデータ) (2024-07-03T14:07:41Z) - Explainable data-driven modeling via mixture of experts: towards
effective blending of grey and black-box models [6.331947318187792]
専門家の混成」の理論的根拠に基づく包括的枠組みを提案する。
このアプローチは、多様なローカルモデルのデータベースの融合を可能にする。
我々は,解釈可能性を高めるために,専門家の組み合わせの急激な変化を罰する。
論文 参考訳(メタデータ) (2024-01-30T15:53:07Z) - Improving Compositional Generalization Using Iterated Learning and
Simplicial Embeddings [19.667133565610087]
構成の一般化は人間には容易だが、ディープニューラルネットワークには難しい。
簡単な埋め込みモデルで繰り返し学習を行うことにより、この能力を向上させることを提案する。
このような変化の組み合わせは、他のアプローチよりも構成の一般化を改善することが示される。
論文 参考訳(メタデータ) (2023-10-28T18:30:30Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - The Neural Race Reduction: Dynamics of Abstraction in Gated Networks [12.130628846129973]
本稿では,情報フローの経路が学習力学に与える影響をスキーマ化するGated Deep Linear Networkフレームワークを紹介する。
正確な還元と、特定の場合において、学習のダイナミクスに対する正確な解が導出されます。
我々の研究は、ニューラルネットワークと学習に関する一般的な仮説を生み出し、より複雑なアーキテクチャの設計を理解するための数学的アプローチを提供する。
論文 参考訳(メタデータ) (2022-07-21T12:01:03Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - Understanding Deep Architectures with Reasoning Layer [60.90906477693774]
本研究では,アルゴリズムの収束,安定性,感度といった特性が,エンドツーエンドモデルの近似と一般化能力と密接に関連していることを示す。
私たちの理論は、深いアーキテクチャを推論層で設計するための有用なガイドラインを提供することができます。
論文 参考訳(メタデータ) (2020-06-24T00:26:35Z) - Relational Neural Machines [19.569025323453257]
本稿では,学習者のパラメータと一階論理に基づく推論を共同で学習するフレームワークを提案する。
ニューラルネットワークは、純粋な準記号学習の場合の古典的な学習結果とマルコフ論理ネットワークの両方を復元することができる。
適切なアルゴリズム解は、大規模な問題において学習と推論が引き出すことができるように考案されている。
論文 参考訳(メタデータ) (2020-02-06T10:53:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。