Muddit: Liberating Generation Beyond Text-to-Image with a Unified Discrete Diffusion Model
- URL: http://arxiv.org/abs/2505.23606v1
- Date: Thu, 29 May 2025 16:15:48 GMT
- Title: Muddit: Liberating Generation Beyond Text-to-Image with a Unified Discrete Diffusion Model
- Authors: Qingyu Shi, Jinbin Bai, Zhuoran Zhao, Wenhao Chai, Kaidong Yu, Jianzong Wu, Shuangyong Song, Yunhai Tong, Xiangtai Li, Xuelong Li, Shuicheng Yan,
- Abstract summary: We introduce Muddit, a unified discrete diffusion transformer that enables fast and parallel generation across both text and image modalities.<n>Unlike prior unified diffusion models trained from scratch, Muddit integrates strong visual priors from a pretrained text-to-image backbone with a lightweight text decoder.
- Score: 87.23753533733046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unified generation models aim to handle diverse tasks across modalities -- such as text generation, image generation, and vision-language reasoning -- within a single architecture and decoding paradigm. Autoregressive unified models suffer from slow inference due to sequential decoding, and non-autoregressive unified models suffer from weak generalization due to limited pretrained backbones. We introduce Muddit, a unified discrete diffusion transformer that enables fast and parallel generation across both text and image modalities. Unlike prior unified diffusion models trained from scratch, Muddit integrates strong visual priors from a pretrained text-to-image backbone with a lightweight text decoder, enabling flexible and high-quality multimodal generation under a unified architecture. Empirical results show that Muddit achieves competitive or superior performance compared to significantly larger autoregressive models in both quality and efficiency. The work highlights the potential of purely discrete diffusion, when equipped with strong visual priors, as a scalable and effective backbone for unified generation.
Related papers
- FUDOKI: Discrete Flow-based Unified Understanding and Generation via Kinetic-Optimal Velocities [76.46448367752944]
multimodal large language models (MLLMs) unify visual understanding and image generation within a single framework.<n>Most existing MLLMs rely on autore (AR) architectures, which impose inherent limitations on future development.<n>We introduce FUDOKI, a unified multimodal model purely based on discrete flow matching.
arXiv Detail & Related papers (2025-05-26T15:46:53Z) - Mogao: An Omni Foundation Model for Interleaved Multi-Modal Generation [54.588082888166504]
We present Mogao, a unified framework that enables interleaved multi-modal generation through a causal approach.<n>Mogoo integrates a set of key technical improvements in architecture design, including a deep-fusion design, dual vision encoders, interleaved rotary position embeddings, and multi-modal classifier-free guidance.<n>Experiments show that Mogao achieves state-of-the-art performance in multi-modal understanding and text-to-image generation, but also excels in producing high-quality, coherent interleaved outputs.
arXiv Detail & Related papers (2025-05-08T17:58:57Z) - Boosting Generative Image Modeling via Joint Image-Feature Synthesis [10.32324138962724]
We introduce a novel generative image modeling framework that seamlessly bridges the gap by leveraging a diffusion model to jointly model low-level image latents.<n>Our latent-semantic diffusion approach learns to generate coherent image-feature pairs from pure noise.<n>By eliminating the need for complex distillation objectives, our unified design simplifies training and unlocks a powerful new inference strategy: Representation Guidance.
arXiv Detail & Related papers (2025-04-22T17:41:42Z) - Unified Multimodal Discrete Diffusion [78.48930545306654]
Multimodal generative models that can understand and generate across multiple modalities are dominated by autoregressive (AR) approaches.<n>We explore discrete diffusion models as a unified generative formulation in the joint text and image domain.<n>We present the first Unified Multimodal Discrete Diffusion (UniDisc) model which is capable of jointly understanding and generating text and images.
arXiv Detail & Related papers (2025-03-26T17:59:51Z) - Dual Diffusion for Unified Image Generation and Understanding [32.7554623473768]
We propose a large-scale and fully end-to-end diffusion model for multi-modal understanding and generation.<n>We leverage a cross-modal maximum likelihood estimation framework that simultaneously trains the conditional likelihoods of both images and text jointly.<n>Our model attained competitive performance compared to recent unified image understanding and generation models.
arXiv Detail & Related papers (2024-12-31T05:49:00Z) - Nested Diffusion Models Using Hierarchical Latent Priors [23.605302440082994]
We introduce nested diffusion models, an efficient and powerful hierarchical generative framework.<n>Our approach employs a series of diffusion models to progressively generate latent variables at different semantic levels.<n>To construct these latent variables, we leverage a pre-trained visual encoder, which learns strong semantic visual representations.
arXiv Detail & Related papers (2024-12-08T16:13:39Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
We propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models.
Our approach can make text-to-image diffusion models easier to use with better user experience.
arXiv Detail & Related papers (2023-05-09T05:48:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.