CMoE: Converting Mixture-of-Experts from Dense to Accelerate LLM Inference
- URL: http://arxiv.org/abs/2502.04416v2
- Date: Sat, 24 May 2025 05:54:15 GMT
- Title: CMoE: Converting Mixture-of-Experts from Dense to Accelerate LLM Inference
- Authors: Zehua Pei, Lancheng Zou, Hui-Ling Zhen, Xianzhi Yu, Wulong Liu, Sinno Jialin Pan, Mingxuan Yuan, Bei Yu,
- Abstract summary: We present CMoE, a framework that rapidly transforms dense language models into mixture-of-experts (MoEs) without training.<n>Experiments demonstrate that, with activation ratio of 75%, it achieves remarkable results in terms of perplexity.<n>A CMoE configuration activating just 25% of parameters reduces end-to-end latency by 1.5x while preserving usable perplexity without additional training.
- Score: 33.871080938643566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scaling large language models (LLMs) improves performance but dramatically increases inference costs. The feed-forward network (FFN), consuming approximately 70\% of inference compute, represents a critical bottleneck, particularly in large batch size scenarios. While mixture-of-experts (MoE) architectures leverage activation sparsity for efficiency, converting existing dense models to MoEs traditionally requires resource-intensive continual pre-training. We present CMoE, a framework that rapidly transforms dense LLMs into MoEs without training. The key innovation lies in analyzing FFN neuron activations to partition them into shared (always active) and routed experts. Routed neurons are clustered using a balanced assignment algorithm, and a differentiable router is constructed analytically from activation statistics, enabling immediate deployment or optional lightweight fine-tuning. Experiments demonstrate that, with activation ratio of 75\%, it achieves remarkable results, delivering lossless precision in terms of perplexity while still maintaining a 5\% acceleration. Further experiments reveal that a CMoE configuration activating just 25\% of parameters reduces end-to-end latency by 1.5x while preserving usable perplexity without additional training. Moreover, a brief LoRA fine-tuning process (requiring only 1 hour and 2,000 samples) successfully recovers over 76\% of the dense model's downstream accuracy. By effectively balancing performance and efficiency, CMoE offers a viable path forward for deploying LLMs in real-world scenarios where computational resources are limited. We make our code publicly available at https://github.com/JarvisPei/CMoE.
Related papers
- DeltaLLM: A Training-Free Framework Exploiting Temporal Sparsity for Efficient Edge LLM Inference [19.987309147268586]
We present DeltaLLM, a training-free framework that exploits temporal sparsity in attention patterns to enable efficient LLM inference on resource-constrained edge devices.<n>We evaluate our framework on the edge-device-friendly BitNet-b1.58-2B-4T model and Llama3.2-1B-Instruct model across diverse language tasks.
arXiv Detail & Related papers (2025-07-25T18:23:18Z) - Optimizing LLM Inference: Fluid-Guided Online Scheduling with Memory Constraints [14.341123057506827]
Large Language Models (LLMs) are indispensable in today's applications, but their inference procedure demands significant computational resources.<n>This paper formulates LLM inference optimization as a multi-stage online scheduling problem.<n>We develop a fluid dynamics approximation to provide a tractable benchmark that guides algorithm design.
arXiv Detail & Related papers (2025-04-15T16:00:21Z) - Mixture of Routers [4.248666380057258]
We propose an efficient fine-tuning method called Mixture of Routers (MoR)
MoR uses multiple sub-routers for joint selection and uses a learnable main router to determine the weights of the sub-routers.
Results show that MoR outperforms baseline models on most tasks, achieving an average performance improvement of 1%.
arXiv Detail & Related papers (2025-03-30T08:39:09Z) - Reinforced Model Merging [53.84354455400038]
We present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks.
By utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times.
arXiv Detail & Related papers (2025-03-27T08:52:41Z) - ResMoE: Space-efficient Compression of Mixture of Experts LLMs via Residual Restoration [61.579842548990754]
Mixture-of-Experts (MoE) Transformer, the backbone of multiple phenomenal language models, leverages sparsity by activating only a fraction of model parameters for each input token.<n>We introduce ResMoE, an innovative MoE approximation framework that utilizes Wasserstein barycenter to extract a common expert (barycenter expert) and approximate the residuals between this barycenter expert and the original ones.
arXiv Detail & Related papers (2025-03-10T03:15:54Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Search for Efficient Large Language Models [52.98684997131108]
Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research.
Weight pruning, quantization, and distillation have been embraced to compress LLMs, targeting memory reduction and inference acceleration.
Most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures.
arXiv Detail & Related papers (2024-09-25T21:32:12Z) - BAM! Just Like That: Simple and Efficient Parameter Upcycling for Mixture of Experts [41.83123857437985]
Training MoEs from scratch in a large-scale regime is prohibitively expensive.
We propose BAM (Branch-Attend-Mix), a simple yet effective method that addresses this shortcoming.
Our experiments on seed models ranging from 590 million to 2 billion parameters demonstrate that BAM surpasses baselines in both perplexity and downstream task performance.
arXiv Detail & Related papers (2024-08-15T17:19:12Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Layerwise Recurrent Router for Mixture-of-Experts [42.36093735411238]
Mixture-of-Experts (MoE) architecture stands out for its ability to scale model size without significantly increasing training costs.
Current MoE models often display parameter inefficiency.
We introduce the Layerwise Recurrent Router for Mixture-of-Experts (RMoE)
arXiv Detail & Related papers (2024-08-13T10:25:13Z) - Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
Adaptive Sparse Trainer (AST) is a novel and efficient retraining framework tailored for semi-structured sparse models.<n>AST reduces the perplexity and zero-shot accuracy gap between dense and 2:4 semi-structured sparse models to 0.6 and 1.16%, respectively.
arXiv Detail & Related papers (2024-07-30T06:33:44Z) - ShiftAddLLM: Accelerating Pretrained LLMs via Post-Training Multiplication-Less Reparameterization [13.622268474310918]
ShiftAddLLM is an efficient multiplication-free model for large language models.
It achieves perplexity improvements of 5.6 and 22.7 points at comparable or lower latency.
Experiments on five LLM families and eight tasks consistently validate the effectiveness of ShiftAddLLM.
arXiv Detail & Related papers (2024-06-10T02:47:55Z) - Not All Experts are Equal: Efficient Expert Pruning and Skipping for Mixture-of-Experts Large Language Models [90.14693869269519]
MoE LLMs can achieve higher performance with fewer parameters, but it is still hard to deploy them due to their immense parameter sizes.
This paper mainly aims to enhance the deployment efficiency of MoE LLMs by introducing plug-and-play expert-level sparsification techniques.
arXiv Detail & Related papers (2024-02-22T18:56:07Z) - MoE-LLaVA: Mixture of Experts for Large Vision-Language Models [49.32669226551026]
We propose a simple yet effective training strategy MoE-Tuning for LVLMs.<n>MoE-LLaVA, a MoE-based sparse LVLM architecture, uniquely activates only the top-k experts through routers.<n>Experiments show the significant performance of MoE-LLaVA in a variety of visual understanding and object hallucination benchmarks.
arXiv Detail & Related papers (2024-01-29T08:13:40Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
We introduce Dynamic Sparse No Training (DSnoT), a training-free fine-tuning approach to fine-tune large language models (LLMs)
Inspired by the Dynamic Sparse Training, DSnoT minimizes the reconstruction error between the dense and sparse LLMs.
Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient training-free manner and open new venues to scale the great potential of sparsity to LLMs.
arXiv Detail & Related papers (2023-10-13T07:38:52Z) - MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided
Adaptation [68.30497162547768]
We propose MoEBERT, which uses a Mixture-of-Experts structure to increase model capacity and inference speed.
We validate the efficiency and effectiveness of MoEBERT on natural language understanding and question answering tasks.
arXiv Detail & Related papers (2022-04-15T23:19:37Z) - LRNNet: A Light-Weighted Network with Efficient Reduced Non-Local
Operation for Real-Time Semantic Segmentation [15.010572800399057]
This paper introduces a light-weighted network with an efficient reduced non-local module (LRNNet) for efficient and realtime semantic segmentation.
Experiments demonstrate our superior trade-off among light-weight, speed, computation and accuracy.
arXiv Detail & Related papers (2020-06-04T08:55:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.