ADIFF: Explaining audio difference using natural language
- URL: http://arxiv.org/abs/2502.04476v1
- Date: Thu, 06 Feb 2025 20:00:43 GMT
- Title: ADIFF: Explaining audio difference using natural language
- Authors: Soham Deshmukh, Shuo Han, Rita Singh, Bhiksha Raj,
- Abstract summary: This paper comprehensively studies the task of explaining audio differences and then propose benchmark, baselines for the task.
We present two new datasets for audio difference explanation derived from the AudioCaps and Clotho audio captioning datasets.
We propose ADIFF, which introduces a cross-projection module, position captioning, and a three-step training process to enhance the model's ability to produce detailed explanations.
- Score: 31.963783032080993
- License:
- Abstract: Understanding and explaining differences between audio recordings is crucial for fields like audio forensics, quality assessment, and audio generation. This involves identifying and describing audio events, acoustic scenes, signal characteristics, and their emotional impact on listeners. This paper stands out as the first work to comprehensively study the task of explaining audio differences and then propose benchmark, baselines for the task. First, we present two new datasets for audio difference explanation derived from the AudioCaps and Clotho audio captioning datasets. Using Large Language Models (LLMs), we generate three levels of difference explanations: (1) concise descriptions of audio events and objects, (2) brief sentences about audio events, acoustic scenes, and signal properties, and (3) comprehensive explanations that include semantics and listener emotions. For the baseline, we use prefix tuning where audio embeddings from two audio files are used to prompt a frozen language model. Our empirical analysis and ablation studies reveal that the naive baseline struggles to distinguish perceptually similar sounds and generate detailed tier 3 explanations. To address these limitations, we propose ADIFF, which introduces a cross-projection module, position captioning, and a three-step training process to enhance the model's ability to produce detailed explanations. We evaluate our model using objective metrics and human evaluation and show our model enhancements lead to significant improvements in performance over naive baseline and SoTA Audio-Language Model (ALM) Qwen Audio. Lastly, we conduct multiple ablation studies to study the effects of cross-projection, language model parameters, position captioning, third stage fine-tuning, and present our findings. Our benchmarks, findings, and strong baseline pave the way for nuanced and human-like explanations of audio differences.
Related papers
- Can Large Audio-Language Models Truly Hear? Tackling Hallucinations with Multi-Task Assessment and Stepwise Audio Reasoning [55.2480439325792]
Large audio-language models (LALMs) have shown impressive capabilities in understanding and reasoning about audio and speech information.
These models still face challenges, including hallucinating non-existent sound events, misidentifying the order of sound events, and incorrectly attributing sound sources.
arXiv Detail & Related papers (2024-10-21T15:55:27Z) - Multimodal Input Aids a Bayesian Model of Phonetic Learning [0.6827423171182154]
We introduce a method for creating high-quality synthetic videos of speakers' faces for an existing audio corpus.
Our learning model, when both trained and tested on audiovisual inputs, achieves up to a 8.1% relative improvement on a phoneme discrimination battery.
Visual information is especially beneficial in noisy audio environments.
arXiv Detail & Related papers (2024-07-22T19:00:11Z) - Learning Audio Concepts from Counterfactual Natural Language [34.118579918018725]
This study introduces causal reasoning and counterfactual analysis in the audio domain.
Our model considers acoustic characteristics and sound source information from human-annotated reference texts.
Specifically, the top-1 accuracy in open-ended language-based audio retrieval task increased by more than 43%.
arXiv Detail & Related papers (2024-01-10T05:15:09Z) - Zero-Shot Audio Captioning via Audibility Guidance [57.70351255180495]
We propose three desiderata for captioning audio -- (i) fluency of the generated text, (ii) faithfulness of the generated text to the input audio, and (iii) audibility.
Our method is a zero-shot method, i.e., we do not learn to perform captioning.
We present our results on the AudioCap dataset, demonstrating that audibility guidance significantly enhances performance compared to the baseline.
arXiv Detail & Related papers (2023-09-07T17:45:58Z) - AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining [46.22290575167155]
This paper proposes a framework that utilizes the same learning method for speech, music, and sound effect generation.
Our framework introduces a general representation of audio, called "language of audio" (LOA)
arXiv Detail & Related papers (2023-08-10T17:55:13Z) - Exploring the Role of Audio in Video Captioning [59.679122191706426]
We present an audio-visual framework, which aims to fully exploit the potential of the audio modality for captioning.
We propose new local-global fusion mechanisms to improve information exchange across audio and video.
arXiv Detail & Related papers (2023-06-21T20:54:52Z) - Language-Guided Audio-Visual Source Separation via Trimodal Consistency [64.0580750128049]
A key challenge in this task is learning to associate the linguistic description of a sound-emitting object to its visual features and the corresponding components of the audio waveform.
We adapt off-the-shelf vision-language foundation models to provide pseudo-target supervision via two novel loss functions.
We demonstrate the effectiveness of our self-supervised approach on three audio-visual separation datasets.
arXiv Detail & Related papers (2023-03-28T22:45:40Z) - Fine-grained Audible Video Description [61.81122862375985]
We construct the first fine-grained audible video description benchmark (FAVDBench)
For each video clip, we first provide a one-sentence summary of the video, followed by 4-6 sentences describing the visual details and 1-2 audio-related descriptions at the end.
We demonstrate that employing fine-grained video descriptions can create more intricate videos than using captions.
arXiv Detail & Related papers (2023-03-27T22:03:48Z) - Learning Audio-Visual Dereverberation [87.52880019747435]
Reverberation from audio reflecting off surfaces and objects in the environment not only degrades the quality of speech for human perception, but also severely impacts the accuracy of automatic speech recognition.
Our idea is to learn to dereverberate speech from audio-visual observations.
We introduce Visually-Informed Dereverberation of Audio (VIDA), an end-to-end approach that learns to remove reverberation based on both the observed sounds and visual scene.
arXiv Detail & Related papers (2021-06-14T20:01:24Z) - Audio Captioning with Composition of Acoustic and Semantic Information [1.90365714903665]
We present a novel encoder-decoder architecture using bi-directional Gated Recurrent Units (BiGRU) with audio and semantic embeddings.
To extract audio features, we use the log Mel energy features, VGGish embeddings, and a pretrained audio neural network (PANN) embeddings.
Our proposed model outperforms state-of-the-art audio captioning models across different evaluation metrics.
arXiv Detail & Related papers (2021-05-13T15:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.