Solla: Towards a Speech-Oriented LLM That Hears Acoustic Context
- URL: http://arxiv.org/abs/2503.15338v1
- Date: Wed, 19 Mar 2025 15:34:21 GMT
- Title: Solla: Towards a Speech-Oriented LLM That Hears Acoustic Context
- Authors: Junyi Ao, Dekun Chen, Xiaohai Tian, Wenjie Feng, Jun Zhang, Lu Lu, Yuxuan Wang, Haizhou Li, Zhizheng Wu,
- Abstract summary: We introduce Solla, a novel framework designed to understand speech-based questions and hear the acoustic context concurrently.<n>Solla incorporates an audio tagging module to effectively identify and represent audio events, as well as an ASR-assisted prediction method to improve comprehension of spoken content.<n>We propose a new benchmark dataset called SA-Eval, which includes three tasks: audio event classification, audio captioning, and audio question answering.
- Score: 45.56363286769136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have recently shown remarkable ability to process not only text but also multimodal inputs such as speech and audio. However, most existing models primarily focus on analyzing input signals using text instructions, overlooking scenarios in which speech instructions and audio are mixed and serve as inputs to the model. To address these challenges, we introduce Solla, a novel framework designed to understand speech-based questions and hear the acoustic context concurrently. Solla incorporates an audio tagging module to effectively identify and represent audio events, as well as an ASR-assisted prediction method to improve comprehension of spoken content. To rigorously evaluate Solla and other publicly available models, we propose a new benchmark dataset called SA-Eval, which includes three tasks: audio event classification, audio captioning, and audio question answering. SA-Eval has diverse speech instruction with various speaking styles, encompassing two difficulty levels, easy and hard, to capture the range of real-world acoustic conditions. Experimental results show that Solla performs on par with or outperforms baseline models on both the easy and hard test sets, underscoring its effectiveness in jointly understanding speech and audio.
Related papers
- ADIFF: Explaining audio difference using natural language [31.963783032080993]
This paper comprehensively studies the task of explaining audio differences and then propose benchmark, baselines for the task.<n>We present two new datasets for audio difference explanation derived from the AudioCaps and Clotho audio captioning datasets.<n>We propose ADIFF, which introduces a cross-projection module, position captioning, and a three-step training process to enhance the model's ability to produce detailed explanations.
arXiv Detail & Related papers (2025-02-06T20:00:43Z) - VoxEval: Benchmarking the Knowledge Understanding Capabilities of End-to-End Spoken Language Models [32.086847480051084]
We present VoxEval, a novel SpeechQA benchmark that assesses knowledge understanding through pure speech interactions.<n>Our benchmark 1) maintains speech format for both inputs and outputs, 2) evaluates model robustness across diverse input audio conditions, and 3) pioneers the assessment of complex tasks like mathematical reasoning in spoken format.
arXiv Detail & Related papers (2025-01-09T04:30:12Z) - Zero-Shot Audio Captioning via Audibility Guidance [57.70351255180495]
We propose three desiderata for captioning audio -- (i) fluency of the generated text, (ii) faithfulness of the generated text to the input audio, and (iii) audibility.
Our method is a zero-shot method, i.e., we do not learn to perform captioning.
We present our results on the AudioCap dataset, demonstrating that audibility guidance significantly enhances performance compared to the baseline.
arXiv Detail & Related papers (2023-09-07T17:45:58Z) - Learning Speech Representation From Contrastive Token-Acoustic
Pretraining [57.08426714676043]
We propose "Contrastive Token-Acoustic Pretraining (CTAP)", which uses two encoders to bring phoneme and speech into a joint multimodal space.
The proposed CTAP model is trained on 210k speech and phoneme pairs, achieving minimally-supervised TTS, VC, and ASR.
arXiv Detail & Related papers (2023-09-01T12:35:43Z) - SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding
Tasks [88.4408774253634]
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community.
There are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers.
Recent work has begun to introduce such benchmark for several tasks.
arXiv Detail & Related papers (2022-12-20T18:39:59Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
We propose a unified cross-modal representation learning framework VATLM (Visual-Audio-Text Language Model)
The proposed VATLM employs a unified backbone network to model the modality-independent information.
In order to integrate these three modalities into one shared semantic space, VATLM is optimized with a masked prediction task of unified tokens.
arXiv Detail & Related papers (2022-11-21T09:10:10Z) - Joint Speech Recognition and Audio Captioning [37.205642807313545]
Speech samples recorded in both indoor and outdoor environments are often contaminated with secondary audio sources.
We aim to bring together the growing field of automated audio captioning (AAC) and the thoroughly studied automatic speech recognition (ASR)
We propose several approaches for end-to-end joint modeling of ASR and AAC tasks.
arXiv Detail & Related papers (2022-02-03T04:42:43Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
Spoken language understanding requires a model to analyze input acoustic signal to understand its linguistic content and make predictions.
Various pre-training methods have been proposed to learn rich representations from large-scale unannotated speech and text.
We propose a novel semi-supervised learning framework, SPLAT, to jointly pre-train the speech and language modules.
arXiv Detail & Related papers (2020-10-05T19:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.