論文の概要: Building A Unified AI-centric Language System: analysis, framework and future work
- arxiv url: http://arxiv.org/abs/2502.04488v1
- Date: Thu, 06 Feb 2025 20:32:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:58:28.307226
- Title: Building A Unified AI-centric Language System: analysis, framework and future work
- Title(参考訳): AI中心の統一言語システムの構築:分析、フレームワーク、今後の研究
- Authors: Edward Hong Wang, Cynthia Xin Wen,
- Abstract要約: 本稿では,AI中心の統一言語システムの設計について考察する。
多様な自然言語入力を合理化されたAIフレンドリーな言語に翻訳するフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recent advancements in large language models have demonstrated that extended inference through techniques can markedly improve performance, yet these gains come with increased computational costs and the propagation of inherent biases found in natural languages. This paper explores the design of a unified AI-centric language system that addresses these challenges by offering a more concise, unambiguous, and computationally efficient alternative to traditional human languages. We analyze the limitations of natural language such as gender bias, morphological irregularities, and contextual ambiguities and examine how these issues are exacerbated within current Transformer architectures, where redundant attention heads and token inefficiencies prevail. Drawing on insights from emergent artificial communication systems and constructed languages like Esperanto and Lojban, we propose a framework that translates diverse natural language inputs into a streamlined AI-friendly language, enabling more efficient model training and inference while reducing memory footprints. Finally, we outline a pathway for empirical validation through controlled experiments, paving the way for a universal interchange format that could revolutionize AI-to-AI and human-to-AI interactions by enhancing clarity, fairness, and overall performance.
- Abstract(参考訳): 大規模言語モデルの最近の進歩は、拡張推論が性能を著しく向上させることを示したが、これらの利点は、計算コストの増大と、自然言語で見いだされる固有バイアスの伝播によるものである。
本稿では,従来の人間の言語に対して,より簡潔で,曖昧で,計算的に効率的な代替手段を提供することによって,これらの課題に対処する統合AI中心型言語システムの設計について検討する。
本稿では,ジェンダーバイアスや形態的不規則,文脈的あいまいさといった自然言語の限界を分析し,これらの問題が現在のトランスフォーマーアーキテクチャにおいてどのように悪化しているかを検討する。
創発的な人工コミュニケーションシステムや、EsperantoやLojbanといった構築言語からの洞察に基づいて、さまざまな自然言語入力を合理化されたAIフレンドリな言語に変換するフレームワークを提案し、メモリフットプリントを削減しながら、より効率的なモデルトレーニングと推論を可能にした。
最後に、制御された実験を通して経験的検証を行うための経路を概説し、明確さ、公正さ、全体的なパフォーマンスを高めることで、AIとAIのインタラクションと人間とAIのインタラクションに革命をもたらす、普遍的な交換フォーマットの道を開く。
関連論文リスト
- Potential Applications of Artificial Intelligence for Cross-language Intelligibility Assessment of Dysarthric Speech [13.475654818182988]
本稿では,言語ユニバーサル音声障害を捉える普遍的モデルと,言語固有の知性モデルからなる概念的枠組みを提案する。
我々は、データ不足、アノテーションの複雑さ、限られた言語的洞察を含む、言語間インテリジェンス評価の鍵となる障壁を識別する。
論文 参考訳(メタデータ) (2025-01-27T08:35:19Z) - Improving Speech Emotion Recognition in Under-Resourced Languages via Speech-to-Speech Translation with Bootstrapping Data Selection [49.27067541740956]
音声感情認識(SER)は、人間とコンピュータの自然な相互作用が可能な汎用AIエージェントを開発する上で重要な要素である。
英語や中国語以外の言語でラベル付きデータが不足しているため、堅牢な多言語SERシステムの構築は依然として困難である。
本稿では,低SERリソース言語におけるSERの性能向上のための手法を提案する。
論文 参考訳(メタデータ) (2024-09-17T08:36:45Z) - Is English the New Programming Language? How About Pseudo-code Engineering? [0.0]
本研究では,OpenAIの指導的言語モデルであるChatGPTに異なる入力形式がどのような影響を及ぼすかを検討する。
それは、意図、解釈可能性、完全性、創造性の4つのカテゴリにまたがるモデルの習熟度を調べる。
論文 参考訳(メタデータ) (2024-04-08T16:28:52Z) - LB-KBQA: Large-language-model and BERT based Knowledge-Based Question
and Answering System [7.626368876843794]
本稿では,Large Language Model(LLM)とBERT(LB-KBQA)に基づく新しいKBQAシステムを提案する。
生成AIの助けを借りて,提案手法は新たに出現した意図を検知し,新たな知識を得ることができた。
ファイナンシャルドメイン質問応答の実験では,本モデルの方が優れた効果を示した。
論文 参考訳(メタデータ) (2024-02-05T16:47:17Z) - Rethinking the Evaluating Framework for Natural Language Understanding
in AI Systems: Language Acquisition as a Core for Future Metrics [0.0]
人工知能(AI)の急成長分野において、自然言語処理(NLP)における大規模言語モデル(LLM)の先例のない進歩は、従来の機械学習のメトリクスのアプローチ全体を再考する機会を提供する。
本稿では,確立されたチューリングテストから,言語習得を基盤とした全包含フレームワークへのパラダイムシフトを提案する。
論文 参考訳(メタデータ) (2023-09-21T11:34:52Z) - Diffusion Language Models Can Perform Many Tasks with Scaling and
Instruction-Finetuning [56.03057119008865]
拡散言語モデルを拡張することで、強力な言語学習者が効果的に学習できることが示される。
大規模データから知識を最初に取得することで,大規模に有能な拡散言語モデルを構築する。
実験により、拡散言語モデルのスケーリングは、下流言語タスクにおけるパフォーマンスを一貫して改善することが示された。
論文 参考訳(メタデータ) (2023-08-23T16:01:12Z) - Towards Bridging the Digital Language Divide [4.234367850767171]
多言語言語処理システムは、しばしばハードワイヤで、通常不随意で、特定の言語に対して隠された表現的嗜好を示す。
偏りのある技術は、しばしば表現される言語の複雑さに不公平な研究・開発手法の結果であることを示す。
我々は,技術設計と方法論の両面から,言語バイアスを減らすことを目的とした新しいイニシアティブを提案する。
論文 参考訳(メタデータ) (2023-07-25T10:53:20Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
言語インフォームド・シンキングのための計算フレームワークである「構成」を合理的に提案する。
我々は、自然言語から確率論的思考言語への文脈感応的なマッピングとして、言語の意味を定式化する。
LLMは、現実的に適切な言語的意味をキャプチャする文脈依存翻訳を生成することができることを示す。
認知的なモチベーションを持つシンボリックモジュールを統合するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2023-06-22T05:14:00Z) - On Robustness of Prompt-based Semantic Parsing with Large Pre-trained
Language Model: An Empirical Study on Codex [48.588772371355816]
本稿では,大規模なプロンプトベース言語モデルであるコーデックスの対角的ロバスト性に関する最初の実証的研究について述べる。
この結果から, 最先端の言語モデル(SOTA)は, 慎重に構築された敵の例に対して脆弱であることが示された。
論文 参考訳(メタデータ) (2023-01-30T13:21:00Z) - Towards Zero-shot Language Modeling [90.80124496312274]
人間の言語学習に誘導的に偏りを持つニューラルモデルを構築した。
類型的に多様な訓練言語のサンプルからこの分布を推測する。
我々は、保留言語に対する遠隔監視として、追加の言語固有の側情報を利用する。
論文 参考訳(メタデータ) (2021-08-06T23:49:18Z) - SG-Net: Syntax Guided Transformer for Language Representation [58.35672033887343]
本稿では,言語的動機づけのある単語表現のための明示的な構文制約をアテンション機構に組み込むことにより,テキストモデリングの指導に構文を用いることを提案する。
詳細は、自己注意ネットワーク(SAN)が支援するTransformerベースのエンコーダについて、SANにSDOI設計の構文依存性を導入し、構文誘導型自己注意型SDOI-SANを形成する。
機械読解、自然言語推論、ニューラルネットワーク翻訳などの一般的なベンチマークタスクの実験は、提案したSG-Net設計の有効性を示している。
論文 参考訳(メタデータ) (2020-12-27T11:09:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。