論文の概要: Revisiting Intermediate-Layer Matching in Knowledge Distillation: Layer-Selection Strategy Doesn't Matter (Much)
- arxiv url: http://arxiv.org/abs/2502.04499v1
- Date: Thu, 06 Feb 2025 21:00:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:58:54.800054
- Title: Revisiting Intermediate-Layer Matching in Knowledge Distillation: Layer-Selection Strategy Doesn't Matter (Much)
- Title(参考訳): 知識蒸留における中間層マッチングの再検討:層選択戦略は重要ではない (Much)
- Authors: Zony Yu, Yuqiao Wen, Lili Mou,
- Abstract要約: 教師の階層を逆向きに整合させるような、一見非合理的なマッチング戦略は、依然として驚くほど良い学生成績をもたらすことを示す。
この現象の解釈として,教師層間の角度を学生の視点で検討する。
- 参考スコア(独自算出の注目度): 23.091613114955543
- License:
- Abstract: Knowledge distillation (KD) is a popular method of transferring knowledge from a large "teacher" model to a small "student" model. KD can be divided into two categories: prediction matching and intermediate-layer matching. We explore an intriguing phenomenon: layer-selection strategy does not matter (much) in intermediate-layer matching. In this paper, we show that seemingly nonsensical matching strategies such as matching the teacher's layers in reverse still result in surprisingly good student performance. We provide an interpretation for this phenomenon by examining the angles between teacher layers viewed from the student's perspective.
- Abstract(参考訳): 知識蒸留(KD)は、大きな「教師」モデルから小さな「学生」モデルへ知識を伝達する一般的な方法である。
KDは予測マッチングと中間層マッチングの2つのカテゴリに分けられる。
我々は,中間層マッチングにおいて層選択戦略が重要でないという,興味深い現象を探求する。
本稿では,教師の階層を逆向きに整合させるような,一見無意味なマッチング戦略が,学生のパフォーマンスを驚くほど向上させることを示す。
この現象の解釈として,教師層間の角度を学生の視点で検討する。
関連論文リスト
- Preview-based Category Contrastive Learning for Knowledge Distillation [53.551002781828146]
知識蒸留(PCKD)のための新しい予見型カテゴリーコントラスト学習法を提案する。
まず、インスタンスレベルの特徴対応と、インスタンスの特徴とカテゴリ中心の関係の両方の構造的知識を蒸留する。
カテゴリ表現を明示的に最適化し、インスタンスとカテゴリの表現を明確に関連付けることができる。
論文 参考訳(メタデータ) (2024-10-18T03:31:00Z) - I2CKD : Intra- and Inter-Class Knowledge Distillation for Semantic Segmentation [1.433758865948252]
本稿では,イメージセマンティックセグメンテーションに適した新しい知識蒸留法を提案する。
本手法の焦点は,教師(面倒なモデル)と生徒(コンパクトモデル)の中間層間の知識の獲得と伝達である。
論文 参考訳(メタデータ) (2024-03-27T12:05:22Z) - Knowledge Distillation Layer that Lets the Student Decide [6.689381216751284]
2つの異なる能力でKDを改善する学習可能なKD層を提案する。
一 教師の知識の活用の仕方を学び、ニュアンス情報を破棄し、及び、伝達された知識をより深めていくこと。
論文 参考訳(メタデータ) (2023-09-06T09:05:03Z) - Knowledge Distillation from A Stronger Teacher [44.11781464210916]
本稿では,より強い教師を駆使したDIST法を提案する。
経験的に、学生と教師の予測の相違は、かなり厳しいものになりがちである。
提案手法は単純かつ実用的であり,様々なアーキテクチャに適応できることを示す。
論文 参考訳(メタデータ) (2022-05-21T08:30:58Z) - Partner-Assisted Learning for Few-Shot Image Classification [54.66864961784989]
人間の視覚能力を模倣し、徹底的な人間のアノテーションを必要とせずに効果的なモデルを学ぶために、わずかなショットラーニングが研究されている。
本稿では,新しいクラスのプロトタイプをラベル付きサンプルから推定できるように,要素表現を得るためのトレーニング戦略の設計に焦点をあてる。
本稿では,まずパートナーエンコーダのペアワイド類似性をモデル化し,ソフトアンカーとして機能する特徴を抽出し,その出力をソフトアンカーと整列させ,分類性能を最大化しようとする2段階トレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-15T22:46:19Z) - Revisiting Knowledge Distillation: An Inheritance and Exploration
Framework [153.73692961660964]
知識蒸留(KD)は、教師モデルから生徒モデルに知識を伝達する一般的な手法である。
新たな継承・探索知識蒸留フレームワーク(IE-KD)を提案する。
我々のIE-KDフレームワークは汎用的であり、ディープニューラルネットワークを訓練するための既存の蒸留や相互学習手法と簡単に組み合わせることができる。
論文 参考訳(メタデータ) (2021-07-01T02:20:56Z) - ALP-KD: Attention-Based Layer Projection for Knowledge Distillation [30.896957367331137]
2つのニューラルネットワーク、すなわち教師と学生は、トレーニング中に一緒に結合されます。
教師ネットワークは信頼できる予測者であり、生徒はその予測を模倣しようとします。
このような状況下では、蒸留は最終予測でのみ行われるが、生徒は教師が内部成分を監督する利益も得る。
論文 参考訳(メタデータ) (2020-12-27T22:30:13Z) - Cross-Layer Distillation with Semantic Calibration [26.59016826651437]
本稿では,教師モデルの適切なターゲット層を各生徒層に自動的に割り当てるセマンティックなクロスレイヤー知識蒸留(SemCKD)を提案する。
学習した注意分布により、各学生層は教師モデルから1つの固定中間層ではなく、複数の階層に含まれる知識を蒸留し、訓練における適切なクロス層監視を行う。
論文 参考訳(メタデータ) (2020-12-06T11:16:07Z) - Multi-head Knowledge Distillation for Model Compression [65.58705111863814]
そこで本研究では,中間層における特徴マッチングのための補助分類器を用いた簡易実装法を提案する。
提案手法は,本論文で提示された従来手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-05T00:49:14Z) - Inter-Region Affinity Distillation for Road Marking Segmentation [81.3619453527367]
本研究では,大規模な教員ネットワークからより小さな学生ネットワークへ知識を蒸留する問題について検討する。
我々の手法はInter-Region Affinity KD(IntRA-KD)として知られている。
論文 参考訳(メタデータ) (2020-04-11T04:26:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。