論文の概要: Group-Adaptive Threshold Optimization for Robust AI-Generated Text Detection
- arxiv url: http://arxiv.org/abs/2502.04528v1
- Date: Thu, 06 Feb 2025 21:58:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:58:14.020943
- Title: Group-Adaptive Threshold Optimization for Robust AI-Generated Text Detection
- Title(参考訳): ロバストAI生成テキスト検出のためのグループ適応閾値最適化
- Authors: Minseok Jung, Cynthia Fuertes Panizo, Liam Dugan, May Fung, Pin-Yu Chen, Paul Pu Liang,
- Abstract要約: 本稿では,AI生成コンテンツ分類器におけるグループ固有のしきい値最適化アルゴリズムであるFairOPTを紹介する。
我々のアプローチは、属性(例えば、テキストの長さと書き込みスタイル)に基づいて、データをサブグループに分割し、各グループの決定しきい値を学ぶ。
我々のフレームワークは、AIが生成する出力検出において、より堅牢で公平な分類基準の道を開く。
- 参考スコア(独自算出の注目度): 62.6612561082184
- License:
- Abstract: The advancement of large language models (LLMs) has made it difficult to differentiate human-written text from AI-generated text. Several AI-text detectors have been developed in response, which typically utilize a fixed global threshold (e.g., {\theta} = 0.5) to classify machine-generated text. However, we find that one universal threshold can fail to account for subgroup-specific distributional variations. For example, when using a fixed threshold, detectors make more false positive errors on shorter human-written text than longer, and more positive classifications on neurotic writing styles than open among long text. These discrepancies can lead to misclassification that disproportionately affects certain groups. We address this critical limitation by introducing FairOPT, an algorithm for group-specific threshold optimization in AI-generated content classifiers. Our approach partitions data into subgroups based on attributes (e.g., text length and writing style) and learns decision thresholds for each group, which enables careful balancing of performance and fairness metrics within each subgroup. In experiments with four AI text classifiers on three datasets, FairOPT enhances overall F1 score and decreases balanced error rate (BER) discrepancy across subgroups. Our framework paves the way for more robust and fair classification criteria in AI-generated output detection.
- Abstract(参考訳): 大規模言語モデル(LLM)の進歩は、AI生成テキストと人間によるテキストの区別を困難にしている。
機械生成テキストの分類に固定された大域しきい値(eg , {\theta} = 0.5)を使用するAIテキスト検出器が開発されている。
しかし、一つの普遍しきい値が部分群固有の分布変動を考慮できないことが分かる。
例えば、固定しきい値を使用する場合、検出器は短い人書きテキストでは長文よりも誤りを犯し、長いテキストではよりオープンな神経文のスタイルではより肯定的な分類を行う。
これらの不一致は、特定のグループに不均等に影響を及ぼす誤分類を引き起こす可能性がある。
本稿では,AI生成コンテンツ分類器におけるグループ固有のしきい値最適化アルゴリズムであるFairOPTを導入することにより,この限界に対処する。
提案手法では,属性(テキストの長さ,書き込みスタイルなど)に基づいてデータをサブグループに分割し,各グループに対する決定しきい値の学習を行う。
3つのデータセット上の4つのAIテキスト分類器による実験では、FairOPTは全体的なF1スコアを強化し、サブグループ間でのバランスの取れたエラーレート(BER)の差を減少させる。
我々のフレームワークは、AIが生成する出力検出において、より堅牢で公平な分類基準の道を開く。
関連論文リスト
- Who Writes What: Unveiling the Impact of Author Roles on AI-generated Text Detection [44.05134959039957]
本稿では,社会言語学的属性・ジェンダー,CEFR習熟度,学術分野,言語環境に影響を及ぼすAIテキスト検出装置について検討する。
CEFRの習熟度と言語環境は一貫して検出器の精度に影響を与え,性別や学術分野は検出器に依存した効果を示した。
これらの発見は、特定の人口集団に不公平に罰を与えるのを避けるために、社会的に認識されたAIテキストの検出が不可欠であることを示している。
論文 参考訳(メタデータ) (2025-02-18T07:49:31Z) - ExaGPT: Example-Based Machine-Generated Text Detection for Human Interpretability [62.285407189502216]
LLM(Large Language Models)によって生成されたテキストの検出は、誤った判断によって致命的な誤りを引き起こす可能性がある。
本稿では,人間の意思決定プロセスに根ざした解釈可能な検出手法であるExaGPTを紹介する。
以上の結果から,ExaGPTは従来の強力な検出器よりも最大で40.9ポイントの精度を1%の偽陽性率で大きく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2025-02-17T01:15:07Z) - Learning to Rewrite: Generalized LLM-Generated Text Detection [19.9477991969521]
大規模言語モデル(LLM)は、非現実的コンテンツを生成し、大規模に偽情報を拡散する際に大きなリスクをもたらす。
本稿では、未知の領域に例外的な一般化を伴うAI生成テキストを検出するための新しいフレームワークであるLearning2Rewriteを紹介する。
論文 参考訳(メタデータ) (2024-08-08T05:53:39Z) - Spotting AI's Touch: Identifying LLM-Paraphrased Spans in Text [61.22649031769564]
我々は、新しいフレームワーク、パラフレーズテキストスパン検出(PTD)を提案する。
PTDは、テキスト内でパラフレーズ付きテキストを識別することを目的としている。
パラフレーズ付きテキストスパン検出のための専用データセットであるPASTEDを構築した。
論文 参考訳(メタデータ) (2024-05-21T11:22:27Z) - ToBlend: Token-Level Blending With an Ensemble of LLMs to Attack AI-Generated Text Detection [6.27025292177391]
ToBlendはトークンレベルのアンサンブルテキスト生成手法であり、現在のAIコンテンツ検出アプローチの堅牢性に挑戦する。
ToBlendは、主要なAIコンテンツ検出手法の性能を著しく低下させる。
論文 参考訳(メタデータ) (2024-02-17T02:25:57Z) - SeqXGPT: Sentence-Level AI-Generated Text Detection [62.3792779440284]
大規模言語モデル(LLM)を用いた文書の合成による文レベル検出の課題について紹介する。
次に,文レベルのAIGT検出機能として,ホワイトボックスLEMのログ確率リストを利用した textbfSequence textbfX (Check) textbfGPT を提案する。
論文 参考訳(メタデータ) (2023-10-13T07:18:53Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
機械が生成するテキストが人間に近い品質を近似するにつれて、検出に必要なサンプルサイズが増大すると主張している。
GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, Llama-2-70B-Chat-HFなどの最先端テキストジェネレータをoBERTa-Large/Base-Detector, GPTZeroなどの検出器に対して試験した。
論文 参考訳(メタデータ) (2023-04-10T17:47:39Z) - Classifiers are Better Experts for Controllable Text Generation [63.17266060165098]
提案手法は, PPLにおける最近のPPLM, GeDi, DExpertsよりも有意に優れており, 生成したテキストの外部分類器に基づく感情の精度が高いことを示す。
同時に、実装やチューニングも簡単で、制限や要件も大幅に少なくなります。
論文 参考訳(メタデータ) (2022-05-15T12:58:35Z) - Efficient text generation of user-defined topic using generative
adversarial networks [0.32228025627337864]
本稿では,この問題を解決するために,2レベル判別器を用いたユーザ定義型GAN(UD-GAN)を提案する。
提案手法は,他の方法よりも少ない時間でテキストを生成することができる。
論文 参考訳(メタデータ) (2020-06-22T04:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。