論文の概要: Learning Semantics-aware Search Operators for Genetic Programming
- arxiv url: http://arxiv.org/abs/2502.04568v1
- Date: Thu, 06 Feb 2025 23:46:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:58:44.211710
- Title: Learning Semantics-aware Search Operators for Genetic Programming
- Title(参考訳): 遺伝的プログラミングのための意味論的検索演算子を学習する
- Authors: Piotr Wyrwiński, Krzysztof Krawiec,
- Abstract要約: テストベースのプログラム合成における適合性景観は、非常に頑丈であることが知られている。
本稿では,有効な候補プログラムの探索を支援するセマンティックス・アウェア・サーチ・オペレータを提案する。
- 参考スコア(独自算出の注目度): 0.20718016474717196
- License:
- Abstract: Fitness landscapes in test-based program synthesis are known to be extremely rugged, with even minimal modifications of programs often leading to fundamental changes in their behavior and, consequently, fitness values. Relying on fitness as the only guidance in iterative search algorithms like genetic programming is thus unnecessarily limiting, especially when combined with purely syntactic search operators that are agnostic about their impact on program behavior. In this study, we propose a semantics-aware search operator that steers the search towards candidate programs that are valuable not only actually (high fitness) but also only potentially, i.e. are likely to be turned into high-quality solutions even if their current fitness is low. The key component of the method is a graph neural network that learns to model the interactions between program instructions and processed data, and produces a saliency map over graph nodes that represents possible search decisions. When applied to a suite of symbolic regression benchmarks, the proposed method outperforms conventional tree-based genetic programming and the ablated variant of the method.
- Abstract(参考訳): テストベースのプログラム合成における適合性景観は、非常に頑丈であることが知られており、プログラムの最小限の変更さえも、その振る舞いの根本的な変化を招き、結果として適合度値が変化する。
遺伝的プログラミングのような反復探索アルゴリズムにおける唯一のガイダンスとして適合性に頼ることは、特にプログラム行動への影響を知らない純粋構文探索演算子と組み合わせた場合、必然的に制限される。
本研究では,現在適合度が低い場合でも,実際に(高適合度)だけではなく,潜在的に高品質なソリューションに転換される可能性のある候補プログラムの探索を,セマンティクスに配慮した探索演算子を提案する。
この手法の主要な構成要素は、プログラム命令と処理されたデータ間の相互作用をモデル化するグラフニューラルネットワークであり、探索決定の可能性を表わすグラフノード上のサリエンシマップを生成する。
シンボリック・レグレッション・ベンチマークのスイートに適用した場合,提案手法は従来の木に基づく遺伝的プログラミングや,その改良版よりも優れている。
関連論文リスト
- Searching Latent Program Spaces [0.0]
本研究では,連続空間における潜伏プログラム上の分布を学習し,効率的な探索とテスト時間適応を可能にするプログラム誘導アルゴリズムを提案する。
テスト時間適応機構を利用して、トレーニング分布を超えて一般化し、目に見えないタスクに適応できることを示す。
論文 参考訳(メタデータ) (2024-11-13T15:50:32Z) - Guiding Genetic Programming with Graph Neural Networks [0.20718016474717196]
本稿では,記号回帰問題から付加的な知識を引き出すためにグラフニューラルネットワークを用いたEvoNUDGEを提案する。
多数の問題インスタンスに対する広範な実験では、EvoNUDGEは複数のベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2024-11-03T20:43:31Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
グラフの外れ値検出は、多くのアプリケーションにおいて、新しいが重要な機械学習タスクである。
UNODと呼ばれるグラフに対して、最初の包括的教師なしノード外乱検出ベンチマークを示す。
論文 参考訳(メタデータ) (2022-06-21T01:46:38Z) - Searching for More Efficient Dynamic Programs [61.79535031840558]
本稿では,プログラム変換の集合,変換プログラムの効率を評価するための単純な指標,およびこの指標を改善するための探索手順について述べる。
実際に、自動検索は初期プログラムの大幅な改善を見出すことができることを示す。
論文 参考訳(メタデータ) (2021-09-14T20:52:55Z) - Recent Developments in Program Synthesis with Evolutionary Algorithms [1.8047694351309207]
関連する進化的プログラム合成手法を同定し,その性能を詳細に解析する。
私たちが特定する最も影響力のあるアプローチは、スタックベース、文法誘導、および線形遺伝プログラミングである。
今後の研究のために、研究者は、プログラムのアウトプットを使用して、ソリューションの品質を評価するだけでなく、ソリューションへの道を開くことを奨励します。
論文 参考訳(メタデータ) (2021-08-27T11:38:27Z) - Enforcing Consistency in Weakly Supervised Semantic Parsing [68.2211621631765]
本稿では,関連する入力に対する出力プログラム間の整合性を利用して,スプリアスプログラムの影響を低減することを提案する。
より一貫性のあるフォーマリズムは、一貫性に基づくトレーニングを必要とせずに、モデルパフォーマンスを改善することにつながります。
論文 参考訳(メタデータ) (2021-07-13T03:48:04Z) - Representing Partial Programs with Blended Abstract Semantics [62.20775388513027]
プログラム合成エンジンにおける部分的なプログラム表現手法について紹介する。
モジュラーニューラルネットワークとして実装された近似実行モデルを学ぶ。
これらのハイブリッドニューロシンボリック表現は、実行誘導型シンセサイザーがより強力な言語構成を使うことができることを示す。
論文 参考訳(メタデータ) (2020-12-23T20:40:18Z) - BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration [72.88493072196094]
プログラムのボトムアップ検索に学習を活用する新しい合成手法を提案する。
特に、入力出力例のセットに基づいて、探索条件中の中間値の合成を優先順位付けするようにモデルを訓練する。
単純な教師付き学習アプローチであっても,学習とボトムアップ検索の組み合わせは極めて効果的であることを示す。
論文 参考訳(メタデータ) (2020-07-28T17:46:18Z) - Learning Differentiable Programs with Admissible Neural Heuristics [43.54820901841979]
ドメイン固有言語におけるプログラムとして表現される微分可能関数の学習問題について検討する。
我々は、この最適化問題を、プログラム構文のトップダウン導出を符号化した重み付きグラフの探索として構成する。
私たちの重要なイノベーションは、さまざまなニューラルネットワークのクラスを、プログラムの空間上の連続的な緩和と見なすことです。
論文 参考訳(メタデータ) (2020-07-23T16:07:39Z) - Strong Generalization and Efficiency in Neural Programs [69.18742158883869]
本稿では,ニューラルプログラム誘導の枠組みを強く一般化する効率的なアルゴリズムを学習する問題について検討する。
ニューラルネットワークの入力/出力インターフェースを慎重に設計し、模倣することで、任意の入力サイズに対して正しい結果を生成するモデルを学ぶことができる。
論文 参考訳(メタデータ) (2020-07-07T17:03:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。