論文の概要: Tolerance-Aware Deep Optics
- arxiv url: http://arxiv.org/abs/2502.04719v1
- Date: Fri, 07 Feb 2025 07:42:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:55:50.004377
- Title: Tolerance-Aware Deep Optics
- Title(参考訳): Tolerance-Aware Deep Optics
- Authors: Jun Dai, Liqun Chen, Xinge Yang, Yuyao Hu, Jinwei Gu, Tianfan Xue,
- Abstract要約: 深層光学は、深層学習アルゴリズムで光学素子を共設計することで有望なアプローチとして現れてきた。
我々は、複数の許容型を深い光学設計パイプラインに組み込んだ、エンドツーエンドの許容-認識最適化フレームワークを初めて提示する。
本手法は, 物理インフォームドモデリングとデータ駆動型トレーニングを組み合わせることで, 製造・組立における構造偏差を考慮し補償することにより, 光設計を向上させる。
- 参考スコア(独自算出の注目度): 15.445359232123133
- License:
- Abstract: Deep optics has emerged as a promising approach by co-designing optical elements with deep learning algorithms. However, current research typically overlooks the analysis and optimization of manufacturing and assembly tolerances. This oversight creates a significant performance gap between designed and fabricated optical systems. To address this challenge, we present the first end-to-end tolerance-aware optimization framework that incorporates multiple tolerance types into the deep optics design pipeline. Our method combines physics-informed modelling with data-driven training to enhance optical design by accounting for and compensating for structural deviations in manufacturing and assembly. We validate our approach through computational imaging applications, demonstrating results in both simulations and real-world experiments. We further examine how our proposed solution improves the robustness of optical systems and vision algorithms against tolerances through qualitative and quantitative analyses. Code and additional visual results are available at openimaginglab.github.io/LensTolerance.
- Abstract(参考訳): 深層光学は、深層学習アルゴリズムで光学素子を共設計することで有望なアプローチとして現れてきた。
しかし、最近の研究は一般的に製造と組立の耐性の分析と最適化を見落としている。
この監視は、設計された光学系と製造された光学系の間に大きな性能ギャップを生じさせる。
この課題に対処するために、複数のトレランスタイプを深い光学設計パイプラインに組み込んだ、エンドツーエンドのトレランス対応最適化フレームワークを初めて提示する。
本手法は, 物理インフォームドモデリングとデータ駆動型トレーニングを組み合わせることで, 製造・組立における構造偏差を考慮し補償することにより, 光設計を向上させる。
我々は,シミュレーションと実世界の実験の両方において,計算画像の応用によるアプローチの有効性を検証した。
さらに,光学系と視覚アルゴリズムの質的,定量的解析による耐性に対する頑健性の改善について検討した。
コードと視覚的な追加結果はopenimaginglab.github.io/LensToleranceで公開されている。
関連論文リスト
- Successive optimization of optics and post-processing with differentiable coherent PSF operator and field information [9.527960631238173]
我々は正確な光学シミュレーションモデルを導入し、パイプライン内の全ての操作は微分可能である。
様々な劣化に効率的に対処するために,フィールド情報を活用する共同最適化手法を設計する。
論文 参考訳(メタデータ) (2024-12-19T07:49:40Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - A Differentiable Wave Optics Model for End-to-End Computational Imaging System Optimization [19.83939112821776]
エンドツーエンドの最適化は、計算画像システム設計のための強力なデータ駆動方式として登場した。
複合光学のエンドツーエンド最適化のために光輸送における収差と回折の両方をモデル化することは困難である。
複合光学の収差と回折の両方を効率的にモデル化する微分可能な光学シミュレータを提案する。
論文 参考訳(メタデータ) (2024-12-13T00:57:47Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Global Search Optics: Automatically Exploring Optimal Solutions to Compact Computational Imaging Systems [15.976326291076377]
モバイルビジョンの人気は、高度なコンパクト・コンピュート・イメージング・システムへの需要を生み出している。
共同設計パイプラインが最前線に現れ、2つの重要なコンポーネントがデータ駆動学習によって同時に最適化される。
本稿では,GSO(Global Search Optimization)を用いて,コンパクトな画像処理システムの設計を行う。
論文 参考訳(メタデータ) (2024-04-30T01:59:25Z) - Neural Lithography: Close the Design-to-Manufacturing Gap in
Computational Optics with a 'Real2Sim' Learned Photolithography Simulator [2.033983045970252]
計算光学における「デザイン・ツー・マニュファクチャリング」のギャップに対処するために,ニューラルリソグラフィを導入する。
本稿では,事前学習したフォトリソグラフィーシミュレータをモデルベース光設計ループに統合する,完全に微分可能な設計フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T15:50:26Z) - Revealing the preference for correcting separated aberrations in joint
optic-image design [19.852225245159598]
我々は、スマートフォンやドローンのような複雑なシステムの効率的な共同設計を実現するために、分離された収差を持つ光学を特徴付ける。
視野が大きいレンズの真の撮像手順を再現する画像シミュレーションシステムを提案する。
共同設計における分離収差補正の選好は, 縦色収差, 横色収差, 球状収差, フィールド曲率, コマの順である。
論文 参考訳(メタデータ) (2023-09-08T14:12:03Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Learning Deep Context-Sensitive Decomposition for Low-Light Image
Enhancement [58.72667941107544]
典型的なフレームワークは、照明と反射を同時に推定することであるが、特徴空間にカプセル化されたシーンレベルの文脈情報を無視する。
本研究では,空間スケールにおけるシーンレベルのコンテキスト依存を生かした,コンテキスト依存型分解ネットワークアーキテクチャを提案する。
チャネル数を減らして軽量なCSDNet(LiteCSDNet)を開発する。
論文 参考訳(メタデータ) (2021-12-09T06:25:30Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
本研究では,連続空間の逆設計問題を,制約のないバイナリ最適化問題にマッピングする,汎用的な機械学習ベースのフレームワークを開発する。
本研究では, 熱発光トポロジを熱光応用に最適化し, (ii) 高効率ビームステアリングのための拡散メタグレーティングを行うことにより, 2つの逆設計問題に対するフレームワークの性能を示す。
論文 参考訳(メタデータ) (2021-05-06T02:22:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。