Advancing Wasserstein Convergence Analysis of Score-Based Models: Insights from Discretization and Second-Order Acceleration
- URL: http://arxiv.org/abs/2502.04849v1
- Date: Fri, 07 Feb 2025 11:37:51 GMT
- Title: Advancing Wasserstein Convergence Analysis of Score-Based Models: Insights from Discretization and Second-Order Acceleration
- Authors: Yifeng Yu, Lu Yu,
- Abstract summary: We focus on the Wasserstein convergence analysis of score-based diffusion models.
We compare various discretization schemes, including Euler discretization, exponential midpoint and randomization methods.
We propose an accelerated sampler based on the local linearization method.
- Score: 5.548787731232499
- License:
- Abstract: Score-based diffusion models have emerged as powerful tools in generative modeling, yet their theoretical foundations remain underexplored. In this work, we focus on the Wasserstein convergence analysis of score-based diffusion models. Specifically, we investigate the impact of various discretization schemes, including Euler discretization, exponential integrators, and midpoint randomization methods. Our analysis provides a quantitative comparison of these discrete approximations, emphasizing their influence on convergence behavior. Furthermore, we explore scenarios where Hessian information is available and propose an accelerated sampler based on the local linearization method. We demonstrate that this Hessian-based approach achieves faster convergence rates of order $\widetilde{\mathcal{O}}\left(\frac{1}{\varepsilon}\right)$ significantly improving upon the standard rate $\widetilde{\mathcal{O}}\left(\frac{1}{\varepsilon^2}\right)$ of vanilla diffusion models, where $\varepsilon$ denotes the target accuracy.
Related papers
- Wasserstein Bounds for generative diffusion models with Gaussian tail targets [0.0]
We present an estimate of the Wasserstein distance between the data distribution and the generation of score-based generative models.
The complexity bound in dimension is $O(sqrtd)$, with a logarithmic constant.
arXiv Detail & Related papers (2024-12-15T17:20:42Z) - Improved Convergence Rate for Diffusion Probabilistic Models [7.237817437521988]
Score-based diffusion models have achieved remarkable empirical performance in the field of machine learning and artificial intelligence.
Despite a lot of theoretical attempts, there still exists significant gap between theory and practice.
We establish an iteration complexity at the order of $d2/3varepsilon-2/3$, which is better than $d5/12varepsilon-1$.
Our theory accommodates $varepsilon$-accurate score estimates, and does not require log-concavity on the target distribution.
arXiv Detail & Related papers (2024-10-17T16:37:33Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Kinetic Interacting Particle Langevin Monte Carlo [0.0]
This paper introduces and analyses interacting underdamped Langevin algorithms, for statistical inference in latent variable models.
We propose a diffusion process that evolves jointly in the space of parameters and latent variables.
We provide two explicit discretisations of this diffusion as practical algorithms to estimate parameters of statistical models.
arXiv Detail & Related papers (2024-07-08T09:52:46Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
This paper studies amortized sampling of the posterior over data, $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$, in a model that consists of a diffusion generative model prior $p(mathbfx)$ and a black-box constraint or function $r(mathbfx)$.
We prove the correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from
arXiv Detail & Related papers (2024-05-31T16:18:46Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.