IPSeg: Image Posterior Mitigates Semantic Drift in Class-Incremental Segmentation
- URL: http://arxiv.org/abs/2502.04870v1
- Date: Fri, 07 Feb 2025 12:19:37 GMT
- Title: IPSeg: Image Posterior Mitigates Semantic Drift in Class-Incremental Segmentation
- Authors: Xiao Yu, Yan Fang, Yao Zhao, Yunchao Wei,
- Abstract summary: We identify two critical challenges in CISS that contribute to semantic drift and degrade performance.
First, we highlight the issue of separate optimization, where different parts of the model are optimized in distinct incremental stages.
Second, we identify noisy semantics arising from inappropriate pseudo-labeling, which results in sub-optimal results.
- Score: 77.06177202334398
- License:
- Abstract: Class incremental learning aims to enable models to learn from sequential, non-stationary data streams across different tasks without catastrophic forgetting. In class incremental semantic segmentation (CISS), the semantic content of image pixels evolves over incremental phases, known as semantic drift. In this work, we identify two critical challenges in CISS that contribute to semantic drift and degrade performance. First, we highlight the issue of separate optimization, where different parts of the model are optimized in distinct incremental stages, leading to misaligned probability scales. Second, we identify noisy semantics arising from inappropriate pseudo-labeling, which results in sub-optimal results. To address these challenges, we propose a novel and effective approach, Image Posterior and Semantics Decoupling for Segmentation (IPSeg). IPSeg introduces two key mechanisms: (1) leveraging image posterior probabilities to align optimization across stages and mitigate the effects of separate optimization, and (2) employing semantics decoupling to handle noisy semantics and tailor learning strategies for different semantics. Extensive experiments on the Pascal VOC 2012 and ADE20K datasets demonstrate that IPSeg achieves superior performance compared to state-of-the-art methods, particularly in challenging long-term incremental scenarios.
Related papers
- Continual Panoptic Perception: Towards Multi-modal Incremental Interpretation of Remote Sensing Images [16.0258685984844]
Continual learning (CL) breaks off the one-way training manner and enables a model to adapt to new data, semantics and tasks continuously.
We propose a unified continual learning model that leverages multi-task joint learning covering pixel-level classification, instance-level segmentation and image-level perception.
arXiv Detail & Related papers (2024-07-19T12:22:32Z) - Semantics-Depth-Symbiosis: Deeply Coupled Semi-Supervised Learning of
Semantics and Depth [83.94528876742096]
We tackle the MTL problem of two dense tasks, ie, semantic segmentation and depth estimation, and present a novel attention module called Cross-Channel Attention Module (CCAM)
In a true symbiotic spirit, we then formulate a novel data augmentation for the semantic segmentation task using predicted depth called AffineMix, and a simple depth augmentation using predicted semantics called ColorAug.
Finally, we validate the performance gain of the proposed method on the Cityscapes dataset, which helps us achieve state-of-the-art results for a semi-supervised joint model based on depth and semantic
arXiv Detail & Related papers (2022-06-21T17:40:55Z) - In-N-Out Generative Learning for Dense Unsupervised Video Segmentation [89.21483504654282]
In this paper, we focus on the unsupervised Video Object (VOS) task which learns visual correspondence from unlabeled videos.
We propose the In-aNd-Out (INO) generative learning from a purely generative perspective, which captures both high-level and fine-grained semantics.
Our INO outperforms previous state-of-the-art methods by significant margins.
arXiv Detail & Related papers (2022-03-29T07:56:21Z) - Adversarial Dual-Student with Differentiable Spatial Warping for
Semi-Supervised Semantic Segmentation [70.2166826794421]
We propose a differentiable geometric warping to conduct unsupervised data augmentation.
We also propose a novel adversarial dual-student framework to improve the Mean-Teacher.
Our solution significantly improves the performance and state-of-the-art results are achieved on both datasets.
arXiv Detail & Related papers (2022-03-05T17:36:17Z) - Exploring Feature Representation Learning for Semi-supervised Medical
Image Segmentation [30.608293915653558]
We present a two-stage framework for semi-supervised medical image segmentation.
Key insight is to explore the feature representation learning with labeled and unlabeled (i.e., pseudo labeled) images.
A stage-adaptive contrastive learning method is proposed, containing a boundary-aware contrastive loss.
We present an aleatoric uncertainty-aware method, namely AUA, to generate higher-quality pseudo labels.
arXiv Detail & Related papers (2021-11-22T05:06:12Z) - A Simple Baseline for Semi-supervised Semantic Segmentation with Strong
Data Augmentation [74.8791451327354]
We propose a simple yet effective semi-supervised learning framework for semantic segmentation.
A set of simple design and training techniques can collectively improve the performance of semi-supervised semantic segmentation significantly.
Our method achieves state-of-the-art results in the semi-supervised settings on the Cityscapes and Pascal VOC datasets.
arXiv Detail & Related papers (2021-04-15T06:01:39Z) - Weakly supervised segmentation with cross-modality equivariant
constraints [7.757293476741071]
Weakly supervised learning has emerged as an appealing alternative to alleviate the need for large labeled datasets in semantic segmentation.
We present a novel learning strategy that leverages self-supervision in a multi-modal image scenario to significantly enhance original CAMs.
Our approach outperforms relevant recent literature under the same learning conditions.
arXiv Detail & Related papers (2021-04-06T13:14:20Z) - Self-paced and self-consistent co-training for semi-supervised image
segmentation [23.100800154116627]
Deep co-training has been proposed as an effective approach for image segmentation when annotated data is scarce.
In this paper, we improve existing approaches for semi-supervised segmentation with a self-paced and self-consistent co-training method.
arXiv Detail & Related papers (2020-10-31T17:41:03Z) - Synthetic Convolutional Features for Improved Semantic Segmentation [139.5772851285601]
We suggest to generate intermediate convolutional features and propose the first synthesis approach that is catered to such intermediate convolutional features.
This allows us to generate new features from label masks and include them successfully into the training procedure.
Experimental results and analysis on two challenging datasets Cityscapes and ADE20K show that our generated feature improves performance on segmentation tasks.
arXiv Detail & Related papers (2020-09-18T14:12:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.