A Foundational Brain Dynamics Model via Stochastic Optimal Control
- URL: http://arxiv.org/abs/2502.04892v1
- Date: Fri, 07 Feb 2025 12:57:26 GMT
- Title: A Foundational Brain Dynamics Model via Stochastic Optimal Control
- Authors: Joonhyeong Park, Byoungwoo Park, Chang-Bae Bang, Jungwon Choi, Hyungjin Chung, Byung-Hoon Kim, Juho Lee,
- Abstract summary: We introduce a foundational model for brain dynamics that utilizes optimal control (SOC) and amortized inference.
Our method features a continuous-discrete state space model (SSM) that can robustly handle the intricate and noisy nature of fMRI signals.
Our model attains state-of-the-art results across a variety of downstream tasks, including demographic prediction, trait analysis, disease diagnosis, and prognosis.
- Score: 15.8358479596609
- License:
- Abstract: We introduce a foundational model for brain dynamics that utilizes stochastic optimal control (SOC) and amortized inference. Our method features a continuous-discrete state space model (SSM) that can robustly handle the intricate and noisy nature of fMRI signals. To address computational limitations, we implement an approximation strategy grounded in the SOC framework. Additionally, we present a simulation-free latent dynamics approach that employs locally linear approximations, facilitating efficient and scalable inference. For effective representation learning, we derive an Evidence Lower Bound (ELBO) from the SOC formulation, which integrates smoothly with recent advancements in self-supervised learning (SSL), thereby promoting robust and transferable representations. Pre-trained on extensive datasets such as the UKB, our model attains state-of-the-art results across a variety of downstream tasks, including demographic prediction, trait analysis, disease diagnosis, and prognosis. Moreover, evaluating on external datasets such as HCP-A, ABIDE, and ADHD200 further validates its superior abilities and resilience across different demographic and clinical distributions. Our foundational model provides a scalable and efficient approach for deciphering brain dynamics, opening up numerous applications in neuroscience.
Related papers
- SkelMamba: A State Space Model for Efficient Skeleton Action Recognition of Neurological Disorders [14.304356695180005]
We introduce a novel state-space model (SSM)-based framework for skeleton-based human action recognition.
Our model captures local joint interactions and global motion patterns across multiple body parts.
This gait-aware decomposition enhances the ability to identify subtle motion patterns critical in medical diagnosis.
arXiv Detail & Related papers (2024-11-29T08:43:52Z) - Addressing Data Heterogeneity in Federated Learning of Cox Proportional Hazards Models [8.798959872821962]
This paper outlines an approach in the domain of federated survival analysis, specifically the Cox Proportional Hazards (CoxPH) model.
We present an FL approach that employs feature-based clustering to enhance model accuracy across synthetic datasets and real-world applications.
arXiv Detail & Related papers (2024-07-20T18:34:20Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Inference of Dependency Knowledge Graph for Electronic Health Records [13.35941801610195]
We propose a framework for deriving a sparse knowledge graph based on the dynamic log-linear topic model.
Within this model, the KG embeddings are estimated by performing singular value decomposition on the empirical pointwise mutual information matrix.
We then establish entrywise normality for the KG low-rank estimator, enabling the recovery of sparse graph edges with controlled type I error.
arXiv Detail & Related papers (2023-12-25T04:45:36Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Learnability of Competitive Threshold Models [11.005966612053262]
We study the learnability of the competitive threshold model from a theoretical perspective.
We demonstrate how competitive threshold models can be seamlessly simulated by artificial neural networks.
arXiv Detail & Related papers (2022-05-08T01:11:51Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.