SkelMamba: A State Space Model for Efficient Skeleton Action Recognition of Neurological Disorders
- URL: http://arxiv.org/abs/2411.19544v1
- Date: Fri, 29 Nov 2024 08:43:52 GMT
- Title: SkelMamba: A State Space Model for Efficient Skeleton Action Recognition of Neurological Disorders
- Authors: Niki Martinel, Mariano Serrao, Christian Micheloni,
- Abstract summary: We introduce a novel state-space model (SSM)-based framework for skeleton-based human action recognition.
Our model captures local joint interactions and global motion patterns across multiple body parts.
This gait-aware decomposition enhances the ability to identify subtle motion patterns critical in medical diagnosis.
- Score: 14.304356695180005
- License:
- Abstract: We introduce a novel state-space model (SSM)-based framework for skeleton-based human action recognition, with an anatomically-guided architecture that improves state-of-the-art performance in both clinical diagnostics and general action recognition tasks. Our approach decomposes skeletal motion analysis into spatial, temporal, and spatio-temporal streams, using channel partitioning to capture distinct movement characteristics efficiently. By implementing a structured, multi-directional scanning strategy within SSMs, our model captures local joint interactions and global motion patterns across multiple anatomical body parts. This anatomically-aware decomposition enhances the ability to identify subtle motion patterns critical in medical diagnosis, such as gait anomalies associated with neurological conditions. On public action recognition benchmarks, i.e., NTU RGB+D, NTU RGB+D 120, and NW-UCLA, our model outperforms current state-of-the-art methods, achieving accuracy improvements up to $3.2\%$ with lower computational complexity than previous leading transformer-based models. We also introduce a novel medical dataset for motion-based patient neurological disorder analysis to validate our method's potential in automated disease diagnosis.
Related papers
- A Foundational Brain Dynamics Model via Stochastic Optimal Control [15.8358479596609]
We introduce a foundational model for brain dynamics that utilizes optimal control (SOC) and amortized inference.
Our method features a continuous-discrete state space model (SSM) that can robustly handle the intricate and noisy nature of fMRI signals.
Our model attains state-of-the-art results across a variety of downstream tasks, including demographic prediction, trait analysis, disease diagnosis, and prognosis.
arXiv Detail & Related papers (2025-02-07T12:57:26Z) - CATD: Unified Representation Learning for EEG-to-fMRI Cross-Modal Generation [6.682531937245544]
This paper proposes the Condition-Aligned Temporal Diffusion (CATD) framework for end-to-end cross-modal synthesis of neuroimaging.
The proposed framework establishes a new paradigm for cross-modal synthesis of neuroimaging.
It shows promise in medical applications such as improving Parkinson's disease prediction and identifying abnormal brain regions.
arXiv Detail & Related papers (2024-07-16T11:31:38Z) - Spatiotemporal Graph Neural Network Modelling Perfusion MRI [12.712005118761516]
Per vascular MRI (pMRI) offers valuable insights into tumority and promises to predict tumor genotypes.
Yet effective models tailored to 4D pMRI are still lacking.
This study presents the first attempt to model 4D pMRI using a GNN-based model.
arXiv Detail & Related papers (2024-06-10T16:24:46Z) - L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection [44.016805074560295]
Chronic Low Back Pain (CLBP) afflicts millions globally, significantly impacting individuals' well-being and imposing economic burdens on healthcare systems.
While artificial intelligence (AI) and deep learning offer promising avenues for analyzing pain-related behaviors to improve rehabilitation strategies, current models, including convolutional neural networks (CNNs), have limitations.
We introduce hbox EmoL-SFAN, a lightweight CNN architecture incorporating 2D filters designed to capture the spatial-temporal interplay of data from motion capture and surface electromyography sensors.
arXiv Detail & Related papers (2024-06-07T12:01:37Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
We integrate a musculoskeletal system with a learnable parametric hand model, MANO, to create MS-MANO.
This model emulates the dynamics of muscles and tendons to drive the skeletal system, imposing physiologically realistic constraints on the resulting torque trajectories.
We also propose a simulation-in-the-loop pose refinement framework, BioPR, that refines the initial estimated pose through a multi-layer perceptron network.
arXiv Detail & Related papers (2024-04-16T02:18:18Z) - Neural Ordinary Differential Equation based Sequential Image Registration for Dynamic Characterization [13.492983263194636]
This extension work discusses how this framework can aid in the characterization of sequential biological processes.
Our framework considers voxels as particles within a dynamic system, defining deformation fields through the integration of neural differential equations.
We evaluated our framework on two clinical datasets: one for cardiac motion tracking and another for longitudinal brain MRI analysis.
arXiv Detail & Related papers (2024-04-02T17:04:45Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.