Wavelet-Assisted Multi-Frequency Attention Network for Pansharpening
- URL: http://arxiv.org/abs/2502.04903v1
- Date: Fri, 07 Feb 2025 13:15:49 GMT
- Title: Wavelet-Assisted Multi-Frequency Attention Network for Pansharpening
- Authors: Jie Huang, Rui Huang, Jinghao Xu, Siran Pen, Yule Duan, Liangjian Deng,
- Abstract summary: Pansharpening aims to combine a high-resolution panchromatic (PAN) image with a low-resolution multispectral (LRMS) image to produce a high-resolution multispectral (HRMS) image.
Although pansharpening in the frequency domain offers clear advantages, most existing methods either continue to operate solely in the spatial domain or fail to fully exploit the benefits of the frequency domain.
We propose Multi-Frequency Fusion Attention (MFFA), which leverages wavelet transforms to cleanly separate frequencies.
- Score: 15.77836708727337
- License:
- Abstract: Pansharpening aims to combine a high-resolution panchromatic (PAN) image with a low-resolution multispectral (LRMS) image to produce a high-resolution multispectral (HRMS) image. Although pansharpening in the frequency domain offers clear advantages, most existing methods either continue to operate solely in the spatial domain or fail to fully exploit the benefits of the frequency domain. To address this issue, we innovatively propose Multi-Frequency Fusion Attention (MFFA), which leverages wavelet transforms to cleanly separate frequencies and enable lossless reconstruction across different frequency domains. Then, we generate Frequency-Query, Spatial-Key, and Fusion-Value based on the physical meanings represented by different features, which enables a more effective capture of specific information in the frequency domain. Additionally, we focus on the preservation of frequency features across different operations. On a broader level, our network employs a wavelet pyramid to progressively fuse information across multiple scales. Compared to previous frequency domain approaches, our network better prevents confusion and loss of different frequency features during the fusion process. Quantitative and qualitative experiments on multiple datasets demonstrate that our method outperforms existing approaches and shows significant generalization capabilities for real-world scenarios.
Related papers
- FE-UNet: Frequency Domain Enhanced U-Net with Segment Anything Capability for Versatile Image Segmentation [50.9040167152168]
We experimentally quantify the contrast sensitivity function of CNNs and compare it with that of the human visual system.
We propose the Wavelet-Guided Spectral Pooling Module (WSPM) to enhance and balance image features across the frequency domain.
To further emulate the human visual system, we introduce the Frequency Domain Enhanced Receptive Field Block (FE-RFB)
We develop FE-UNet, a model that utilizes SAM2 as its backbone and incorporates Hiera-Large as a pre-trained block.
arXiv Detail & Related papers (2025-02-06T07:24:34Z) - Exploring Richer and More Accurate Information via Frequency Selection for Image Restoration [0.0]
We introduce a multi-scale frequency selection network (MSFSNet) that seamlessly integrates spatial and frequency domain knowledge.
Our MSFSNet achieves performance that is either superior or comparable to state-of-the-art algorithms.
arXiv Detail & Related papers (2024-07-12T03:10:08Z) - Frequency-Adaptive Pan-Sharpening with Mixture of Experts [22.28680499480492]
We propose a novel Frequency Adaptive Mixture of Experts (FAME) learning framework for pan-sharpening.
Our method performs the best against other state-of-the-art ones and comprises a strong generalization ability for real-world scenes.
arXiv Detail & Related papers (2024-01-04T08:58:25Z) - A Dual Domain Multi-exposure Image Fusion Network based on the
Spatial-Frequency Integration [57.14745782076976]
Multi-exposure image fusion aims to generate a single high-dynamic image by integrating images with different exposures.
We propose a novelty perspective on multi-exposure image fusion via the Spatial-Frequency Integration Framework, named MEF-SFI.
Our method achieves visual-appealing fusion results against state-of-the-art multi-exposure image fusion approaches.
arXiv Detail & Related papers (2023-12-17T04:45:15Z) - Unified Frequency-Assisted Transformer Framework for Detecting and
Grounding Multi-Modal Manipulation [109.1912721224697]
We present the Unified Frequency-Assisted transFormer framework, named UFAFormer, to address the DGM4 problem.
By leveraging the discrete wavelet transform, we decompose images into several frequency sub-bands, capturing rich face forgery artifacts.
Our proposed frequency encoder, incorporating intra-band and inter-band self-attentions, explicitly aggregates forgery features within and across diverse sub-bands.
arXiv Detail & Related papers (2023-09-18T11:06:42Z) - Both Spatial and Frequency Cues Contribute to High-Fidelity Image
Inpainting [9.080472817672263]
Deep generative approaches have obtained great success in image inpainting recently.
Most generative inpainting networks suffer from either over-smooth results or aliasing artifacts.
We propose an effective Frequency-Spatial Complementary Network (FSCN) by exploiting rich semantic information in both spatial and frequency domains.
arXiv Detail & Related papers (2023-07-15T01:52:06Z) - Multi-Scale Wavelet Transformer for Face Forgery Detection [43.33712402517951]
We propose a multi-scale wavelet transformer framework for face forgery detection.
Frequency-based spatial attention is designed to guide the spatial feature extractor to concentrate more on forgery traces.
Cross-modality attention is proposed to fuse the frequency features with the spatial features.
arXiv Detail & Related papers (2022-10-08T03:39:36Z) - Adaptive Frequency Learning in Two-branch Face Forgery Detection [66.91715092251258]
We propose Adaptively learn Frequency information in the two-branch Detection framework, dubbed AFD.
We liberate our network from the fixed frequency transforms, and achieve better performance with our data- and task-dependent transform layers.
arXiv Detail & Related papers (2022-03-27T14:25:52Z) - Deep Frequency Filtering for Domain Generalization [55.66498461438285]
Deep Neural Networks (DNNs) have preferences for some frequency components in the learning process.
We propose Deep Frequency Filtering (DFF) for learning domain-generalizable features.
We show that applying our proposed DFF on a plain baseline outperforms the state-of-the-art methods on different domain generalization tasks.
arXiv Detail & Related papers (2022-03-23T05:19:06Z) - WaveFill: A Wavelet-based Generation Network for Image Inpainting [57.012173791320855]
WaveFill is a wavelet-based inpainting network that decomposes images into multiple frequency bands.
WaveFill decomposes images by using discrete wavelet transform (DWT) that preserves spatial information naturally.
It applies L1 reconstruction loss to the low-frequency bands and adversarial loss to high-frequency bands, hence effectively mitigate inter-frequency conflicts.
arXiv Detail & Related papers (2021-07-23T04:44:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.