Exploring Richer and More Accurate Information via Frequency Selection for Image Restoration
- URL: http://arxiv.org/abs/2407.08950v1
- Date: Fri, 12 Jul 2024 03:10:08 GMT
- Title: Exploring Richer and More Accurate Information via Frequency Selection for Image Restoration
- Authors: Hu Gao, Depeng Dang,
- Abstract summary: We introduce a multi-scale frequency selection network (MSFSNet) that seamlessly integrates spatial and frequency domain knowledge.
Our MSFSNet achieves performance that is either superior or comparable to state-of-the-art algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image restoration aims to recover high-quality images from their corrupted counterparts. Many existing methods primarily focus on the spatial domain, neglecting the understanding of frequency variations and ignoring the impact of implicit noise in skip connections. In this paper, we introduce a multi-scale frequency selection network (MSFSNet) that seamlessly integrates spatial and frequency domain knowledge, selectively recovering richer and more accurate information. Specifically, we initially capture spatial features and input them into dynamic filter selection modules (DFS) at different scales to integrate frequency knowledge. DFS utilizes learnable filters to generate high and low-frequency information and employs a frequency cross-attention mechanism (FCAM) to determine the most information to recover. To learn a multi-scale and accurate set of hybrid features, we develop a skip feature fusion block (SFF) that leverages contextual features to discriminatively determine which information should be propagated in skip-connections. It is worth noting that our DFS and SFF are generic plug-in modules that can be directly employed in existing networks without any adjustments, leading to performance improvements. Extensive experiments across various image restoration tasks demonstrate that our MSFSNet achieves performance that is either superior or comparable to state-of-the-art algorithms.
Related papers
- Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution [1.8506868409351092]
Window-based attention methods have shown great potential for computer vision tasks, particularly in Single Image Super-Resolution (SISR)
We propose a new Channel-Partitioned Attention Transformer (CPAT) to better capture long-range dependencies by sequentially expanding windows along the height and width of feature maps.
In addition, we propose a novel Spatial-Frequency Interaction Module (SFIM), which incorporates information from spatial and frequency domains to provide a more comprehensive information from feature maps.
arXiv Detail & Related papers (2024-07-23T07:17:10Z) - Exploring Cross-Domain Few-Shot Classification via Frequency-Aware Prompting [37.721042095518044]
Cross-Domain Few-Shot Learning has witnessed great stride with the development of meta-learning.
We propose a Frequency-Aware Prompting method with mutual attention for Cross-Domain Few-Shot classification.
arXiv Detail & Related papers (2024-06-24T08:14:09Z) - FDCE-Net: Underwater Image Enhancement with Embedding Frequency and Dual Color Encoder [49.79611204954311]
Underwater images often suffer from various issues such as low brightness, color shift, blurred details, and noise due to absorption light and scattering caused by water and suspended particles.
Previous underwater image enhancement (UIE) methods have primarily focused on spatial domain enhancement, neglecting the frequency domain information inherent in the images.
arXiv Detail & Related papers (2024-04-27T15:16:34Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
We propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs.
Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks.
arXiv Detail & Related papers (2023-08-24T03:50:37Z) - Both Spatial and Frequency Cues Contribute to High-Fidelity Image
Inpainting [9.080472817672263]
Deep generative approaches have obtained great success in image inpainting recently.
Most generative inpainting networks suffer from either over-smooth results or aliasing artifacts.
We propose an effective Frequency-Spatial Complementary Network (FSCN) by exploiting rich semantic information in both spatial and frequency domains.
arXiv Detail & Related papers (2023-07-15T01:52:06Z) - Complementary Frequency-Varying Awareness Network for Open-Set
Fine-Grained Image Recognition [14.450381668547259]
Open-set image recognition is a challenging topic in computer vision.
We propose a Complementary Frequency-varying Awareness Network that could better capture both high-frequency and low-frequency information.
Based on CFAN, we propose an open-set fine-grained image recognition method, called CFAN-OSFGR.
arXiv Detail & Related papers (2023-07-14T08:15:36Z) - Multi-scale frequency separation network for image deblurring [10.511076996096117]
We present a new method called multi-scale frequency separation network (MSFS-Net) for image deblurring.
MSFS-Net captures the low and high-frequency information of image at multiple scales.
Experiments on benchmark datasets show that the proposed network achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-06-01T23:48:35Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Deep Frequency Filtering for Domain Generalization [55.66498461438285]
Deep Neural Networks (DNNs) have preferences for some frequency components in the learning process.
We propose Deep Frequency Filtering (DFF) for learning domain-generalizable features.
We show that applying our proposed DFF on a plain baseline outperforms the state-of-the-art methods on different domain generalization tasks.
arXiv Detail & Related papers (2022-03-23T05:19:06Z) - TBNet:Two-Stream Boundary-aware Network for Generic Image Manipulation
Localization [49.521622399483846]
We propose a novel end-to-end two-stream boundary-aware network (abbreviated as TBNet) for generic image manipulation localization.
The proposed TBNet can significantly outperform state-of-the-art generic image manipulation localization methods in terms of both MCC and F1.
arXiv Detail & Related papers (2021-08-10T08:22:05Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
Existing methods, such as optical flow based and end-to-end deep learning based solutions, are error-prone either in detail restoration or ghosting artifacts removal.
In this work, we propose a novel frequency-guided end-to-end deep neural network (FNet) to conduct HDR fusion in the frequency domain, and Wavelet Transform (DWT) is used to decompose inputs into different frequency bands.
The low-frequency signals are used to avoid specific ghosting artifacts, while the high-frequency signals are used for preserving details.
arXiv Detail & Related papers (2021-08-03T12:26:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.