論文の概要: Claim Extraction for Fact-Checking: Data, Models, and Automated Metrics
- arxiv url: http://arxiv.org/abs/2502.04955v1
- Date: Fri, 07 Feb 2025 14:20:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:56:54.396830
- Title: Claim Extraction for Fact-Checking: Data, Models, and Automated Metrics
- Title(参考訳): Fact-Checkingのためのクレーム抽出:データ、モデル、および自動メトリクス
- Authors: Herbert Ullrich, Tomáš Mlynář, Jan Drchal,
- Abstract要約: FEVERFactデータセットを公開し、4Kの文脈化されたウィキペディア文から17Kの原子的事実クレームを抽出した。
各メトリクスに対して、既に探索されたNLPタスクへの還元を用いてスケールを実装する。
我々の最も難しい指標である$F_fact$のランク付けされたモデルが変化しないことを確認するため、一般的なクレームの人間のグレーティングに対してメトリクスを検証する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper, we explore the problem of Claim Extraction using one-to-many text generation methods, comparing LLMs, small summarization models finetuned for the task, and a previous NER-centric baseline QACG. As the current publications on Claim Extraction, Fact Extraction, Claim Generation and Check-worthy Claim Detection are quite scattered in their means and terminology, we compile their common objectives, releasing the FEVERFact dataset, with 17K atomic factual claims extracted from 4K contextualised Wikipedia sentences, adapted from the original FEVER. We compile the known objectives into an Evaluation framework of: Atomicity, Fluency, Decontextualization, Faithfulness checked for each generated claim separately, and Focus and Coverage measured against the full set of predicted claims for a single input. For each metric, we implement a scale using a reduction to an already-explored NLP task. We validate our metrics against human grading of generic claims, to see that the model ranking on $F_{fact}$, our hardest metric, did not change and the evaluation framework approximates human grading very closely in terms of $F_1$ and RMSE.
- Abstract(参考訳): 本稿では,1対多のテキスト生成手法を用いたクレーム抽出の問題点を考察し,LLM,タスクに微調整された小さな要約モデル,以前のNER中心のベースラインQACGを比較した。
クレーム抽出, ファクト抽出, クレーム生成, チェック価値クレーム検出に関する現在の出版物は, それらの手段と用語にかなり散らばっているため, FEVERFactデータセットを公開し, 元のFEVERから適応した4K文脈化されたウィキペディア文から17Kの原子事実クレームを抽出した。
我々は、既知の目的を以下の評価フレームワークにコンパイルする: 原子性、頻度、非コンテキスト化、各生成されたクレームに対して個別にチェックされた忠実さ、そして単一の入力に対する予測されたクレームの完全なセットに対して測定されたフォーカスとカバレッジ。
各メトリクスに対して、既に探索されたNLPタスクへの還元を用いてスケールを実装する。
評価フレームワークは,F_1$とRMSEの観点でヒトの格付けを非常によく近似するので,最も難しい指標である$F_{fact}$にランク付けしたモデルが変化しないことを確認するために,一般的なクレームのヒト格付けに対して評価を行った。
関連論文リスト
- FactLens: Benchmarking Fine-Grained Fact Verification [6.814173254027381]
我々は、複雑なクレームを個別の検証のためにより小さなサブステートに分割する、きめ細かい検証へのシフトを提唱する。
我々は,ファクトレンス(FactLens)という,ファクトレンス(FactLens)という,詳細な事実検証のベンチマークを紹介した。
この結果から,FactLens自動評価器と人的判断との整合性を示し,評価性能に対する準定値特性の影響について考察した。
論文 参考訳(メタデータ) (2024-11-08T21:26:57Z) - Atomic Fact Decomposition Helps Attributed Question Answering [30.75332718824254]
Attributed Question Answering (AQA)は、質問に対する信頼できる回答と信頼できる属性レポートを提供することを目的としている。
本稿では,アトミックな事実分解に基づくRetrieval and Editingフレームワークを提案する。
生成した長文の回答を、命令調整されたLSMによって分子節と原子事実に分解する。
論文 参考訳(メタデータ) (2024-10-22T05:25:54Z) - Localizing Factual Inconsistencies in Attributable Text Generation [91.981439746404]
本稿では,帰属可能なテキスト生成における事実の不整合をローカライズするための新しい形式であるQASemConsistencyを紹介する。
まず,人間のアノテーションに対するQASemConsistency法の有効性を示す。
そこで我々は,局所的な事実の不整合を自動的に検出するいくつかの手法を実装した。
論文 参考訳(メタデータ) (2024-10-09T22:53:48Z) - FENICE: Factuality Evaluation of summarization based on Natural language Inference and Claim Extraction [85.26780391682894]
自然言語推論とクレーム抽出(FENICE)に基づく要約のファクチュアリティ評価を提案する。
FENICEは、ソース文書内の情報と、要約から抽出されたクレームと呼ばれる一連の原子的事実との間のNLIベースのアライメントを利用する。
我々の測定基準は、事実性評価のためのデファクトベンチマークであるAGGREFACTに関する新しい技術状況を設定する。
論文 参考訳(メタデータ) (2024-03-04T17:57:18Z) - Cobra Effect in Reference-Free Image Captioning Metrics [58.438648377314436]
視覚言語事前学習モデル(VLM)を活用した参照フリー手法の普及が出現している。
本稿では,基準自由度に欠陥があるかどうかを考察する。
GPT-4Vは生成した文を評価するための評価ツールであり,提案手法がSOTA(State-of-the-art)の性能を達成することを示す。
論文 参考訳(メタデータ) (2024-02-18T12:36:23Z) - From Chaos to Clarity: Claim Normalization to Empower Fact-Checking [57.024192702939736]
Claim Normalization(別名 ClaimNorm)は、複雑でノイズの多いソーシャルメディア投稿を、より単純で分かりやすい形式に分解することを目的としている。
本稿では,チェーン・オブ・ソートとクレーム・チェック・バシネス推定を利用した先駆的アプローチであるCACNを提案する。
実験により, CACNは様々な評価尺度において, いくつかの基準値を上回る性能を示した。
論文 参考訳(メタデータ) (2023-10-22T16:07:06Z) - WiCE: Real-World Entailment for Claims in Wikipedia [63.234352061821625]
We propose WiCE, a new fine-fine textual entailment dataset built on natural claim and evidence pairs from Wikipedia。
標準クレームレベルのエンターメントに加えて、WiCEはクレームのサブ文単位に対するエンターメント判断を提供する。
我々のデータセットの真のクレームは、既存のモデルで対処できない検証と検索の問題に挑戦することを含んでいる。
論文 参考訳(メタデータ) (2023-03-02T17:45:32Z) - BUMP: A Benchmark of Unfaithful Minimal Pairs for Meta-Evaluation of
Faithfulness Metrics [70.52570641514146]
不誠実な最小対 (BUMP) のベンチマークを示す。
BUMPは、889人の人間が書いた最小限のサマリーペアのデータセットである。
非ペアベースのデータセットとは異なり、BUMPはメトリクスの一貫性を測定するために使用することができる。
論文 参考訳(メタデータ) (2022-12-20T02:17:30Z) - Understanding Factuality in Abstractive Summarization with FRANK: A
Benchmark for Factuality Metrics [17.677637487977208]
現代の要約モデルは、高度に流れるが、実際には信頼できない出力を生成する。
一般的なベンチマークがないため、自動生成したサマリーの事実性を測定するためのメトリクスを比較することはできない。
我々は,事実誤りの類型を考案し,それを用いて,最先端の要約システムから生成された要約の人間のアノテーションを収集する。
論文 参考訳(メタデータ) (2021-04-27T17:28:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。