No Task Left Behind: Isotropic Model Merging with Common and Task-Specific Subspaces
- URL: http://arxiv.org/abs/2502.04959v1
- Date: Fri, 07 Feb 2025 14:22:56 GMT
- Title: No Task Left Behind: Isotropic Model Merging with Common and Task-Specific Subspaces
- Authors: Daniel Marczak, Simone Magistri, Sebastian Cygert, Bartłomiej Twardowski, Andrew D. Bagdanov, Joost van de Weijer,
- Abstract summary: Model merging integrates the weights of multiple task-specific models into a single multi-task model.
Despite recent interest in the problem, a significant performance gap between the combined and single-task models remains.
We show that alignment between singular components of task-specific and merged matrices strongly correlates with performance improvement.
- Score: 17.69597528370121
- License:
- Abstract: Model merging integrates the weights of multiple task-specific models into a single multi-task model. Despite recent interest in the problem, a significant performance gap between the combined and single-task models remains. In this paper, we investigate the key characteristics of task matrices -- weight update matrices applied to a pre-trained model -- that enable effective merging. We show that alignment between singular components of task-specific and merged matrices strongly correlates with performance improvement over the pre-trained model. Based on this, we propose an isotropic merging framework that flattens the singular value spectrum of task matrices, enhances alignment, and reduces the performance gap. Additionally, we incorporate both common and task-specific subspaces to further improve alignment and performance. Our proposed approach achieves state-of-the-art performance across multiple scenarios, including various sets of tasks and model scales. This work advances the understanding of model merging dynamics, offering an effective methodology to merge models without requiring additional training. Code is available at https://github.com/danielm1405/iso-merging .
Related papers
- Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.
Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.
We propose a training-free projection-based continual merging method that processes models sequentially.
arXiv Detail & Related papers (2025-01-16T13:17:24Z) - Modeling Multi-Task Model Merging as Adaptive Projective Gradient Descent [74.02034188307857]
Merging multiple expert models offers a promising approach for performing multi-task learning without accessing their original data.
We find existing methods inevitably discard task-specific information that, while causing conflicts, is crucial for performance.
Our approach consistently outperforms previous methods, achieving state-of-the-art results across diverse architectures and tasks in both vision and NLP domains.
arXiv Detail & Related papers (2025-01-02T12:45:21Z) - The Non-Local Model Merging Problem: Permutation Symmetries and Variance Collapse [25.002218722102505]
Model merging aims to efficiently combine the weights of multiple expert models, each trained on a specific task, into a single multi-task model.
This work explores the more challenging scenario of "non-local" merging.
Standard merging techniques often fail to generalize effectively in this non-local setting.
We propose a multi-task technique to re-scale and shift the output activations of the merged model for each task, aligning its output statistics with those of the corresponding task-specific expert models.
arXiv Detail & Related papers (2024-10-16T17:41:59Z) - Training-Free Pretrained Model Merging [38.16269074353077]
We propose an innovative model merging framework, coined as merging under dual-space constraints (MuDSC)
In order to enhance usability, we have also incorporated adaptations for group structure, including Multi-Head Attention and Group Normalization.
arXiv Detail & Related papers (2024-03-04T06:19:27Z) - Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks [12.146530928616386]
A common approach for targeted problems involves fine-tuning pre-trained foundation models for specific target tasks.
This work focuses on the problem of merging multiple fine-tunings of the same foundation model derived from a spectrum of auxiliary tasks.
We introduce a new simple method, Model Breadcrumbs, which consists of a sparsely defined weight set that guides model adaptation within the weight space of a pre-trained model.
arXiv Detail & Related papers (2023-12-11T19:10:55Z) - Concrete Subspace Learning based Interference Elimination for Multi-task
Model Fusion [86.6191592951269]
Merging models fine-tuned from common extensively pretrained large model but specialized for different tasks has been demonstrated as a cheap and scalable strategy to construct a multitask model that performs well across diverse tasks.
We propose the CONtinuous relaxation dis (Concrete) subspace learning method to identify a common lowdimensional subspace and utilize its shared information track interference problem without sacrificing performance.
arXiv Detail & Related papers (2023-12-11T07:24:54Z) - Parameter Efficient Multi-task Model Fusion with Partial Linearization [97.23530944186078]
We propose a novel method to improve multi-task fusion for parameter-efficient fine-tuning techniques.
Our approach partially linearizes only the adapter modules and applies task arithmetic over the linearized adapters.
We demonstrate that our partial linearization technique enables a more effective fusion of multiple tasks into a single model.
arXiv Detail & Related papers (2023-10-07T08:55:54Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging)
It aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data.
Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11% improvement in performance.
arXiv Detail & Related papers (2023-10-04T04:26:33Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.