A New Paradigm in Tuning Learned Indexes: A Reinforcement Learning Enhanced Approach
- URL: http://arxiv.org/abs/2502.05001v2
- Date: Tue, 18 Feb 2025 17:06:41 GMT
- Title: A New Paradigm in Tuning Learned Indexes: A Reinforcement Learning Enhanced Approach
- Authors: Taiyi Wang, Liang Liang, Guang Yang, Thomas Heinis, Eiko Yoneki,
- Abstract summary: This paper introduces LITune, a novel framework for end-to-end automatic tuning of Learned Index Structures.
LITune employs an adaptive training pipeline equipped with a tailor-made Deep Reinforcement Learning (DRL) approach to ensure stable and efficient tuning.
Our experimental results demonstrate that LITune achieves up to a 98% reduction in runtime and a 17-fold increase in throughput.
- Score: 6.454589614577438
- License:
- Abstract: Learned Index Structures (LIS) have significantly advanced data management by leveraging machine learning models to optimize data indexing. However, designing these structures often involves critical trade-offs, making it challenging for both designers and end-users to find an optimal balance tailored to specific workloads and scenarios. While some indexes offer adjustable parameters that demand intensive manual tuning, others rely on fixed configurations based on heuristic auto-tuners or expert knowledge, which may not consistently deliver optimal performance. This paper introduces LITune, a novel framework for end-to-end automatic tuning of Learned Index Structures. LITune employs an adaptive training pipeline equipped with a tailor-made Deep Reinforcement Learning (DRL) approach to ensure stable and efficient tuning. To accommodate long-term dynamics arising from online tuning, we further enhance LITune with an on-the-fly updating mechanism termed the O2 system. These innovations allow LITune to effectively capture state transitions in online tuning scenarios and dynamically adjust to changing data distributions and workloads, marking a significant improvement over other tuning methods. Our experimental results demonstrate that LITune achieves up to a 98% reduction in runtime and a 17-fold increase in throughput compared to default parameter settings given a selected Learned Index instance. These findings highlight LITune's effectiveness and its potential to facilitate broader adoption of LIS in real-world applications.
Related papers
- MetaML-Pro: Cross-Stage Design Flow Automation for Efficient Deep Learning Acceleration [8.43012094714496]
This paper presents a unified framework for codifying and automating optimization strategies to deploy deep neural networks (DNNs) on resource-constrained hardware.
Our novel approach addresses two key issues: cross-stage co-optimization and optimization search.
Experimental results demonstrate up to a 92% DSP and 89% LUT usage reduction for select networks.
arXiv Detail & Related papers (2025-02-09T11:02:06Z) - Dynamic Noise Preference Optimization for LLM Self-Improvement via Synthetic Data [51.62162460809116]
We introduce Dynamic Noise Preference Optimization (DNPO) to ensure consistent improvements across iterations.
In experiments with Zephyr-7B, DNPO consistently outperforms existing methods, showing an average performance boost of 2.6%.
DNPO shows a significant improvement in model-generated data quality, with a 29.4% win-loss rate gap compared to the baseline in GPT-4 evaluations.
arXiv Detail & Related papers (2025-02-08T01:20:09Z) - Dynamic Rewarding with Prompt Optimization Enables Tuning-free Self-Alignment of Language Models [54.381650481255235]
We introduce a new tuning-free approach for self-alignment, Dynamic Rewarding with Prompt Optimization (O)
Our approach leverages a search-based optimization framework that allows LLMs to iteratively self-improve and craft the optimal alignment instructions.
Empirical evaluations on eight recent LLMs, both open and closed-sourced, demonstrate that DRPO significantly enhances alignment performance.
arXiv Detail & Related papers (2024-11-13T16:15:38Z) - UpLIF: An Updatable Self-Tuning Learned Index Framework [4.077820670802213]
UpLIF is an adaptive self-tuning learned index that adjusts the model to accommodate incoming updates.
We also introduce the concept of balanced model adjustment, which determines the model's inherent properties.
arXiv Detail & Related papers (2024-08-07T22:30:43Z) - Step-On-Feet Tuning: Scaling Self-Alignment of LLMs via Bootstrapping [53.454408491386886]
bootstrapping self-alignment markedly surpasses the single-round approach.
We propose Step-On-Feet Tuning (SOFT) which leverages model's continuously enhanced few-shot ability to boost zero or one-shot performance.
Based on easy-to-hard training recipe, we propose SOFT+ which further boost self-alignment's performance.
arXiv Detail & Related papers (2024-02-12T12:30:42Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - Accelerating Federated Learning with a Global Biased Optimiser [16.69005478209394]
Federated Learning (FL) is a recent development in the field of machine learning that collaboratively trains models without the training data leaving client devices.
We propose a novel, generalised approach for applying adaptive optimisation techniques to FL with the Federated Global Biased Optimiser (FedGBO) algorithm.
FedGBO accelerates FL by applying a set of global biased optimiser values during the local training phase of FL, which helps to reduce client-drift' from non-IID data.
arXiv Detail & Related papers (2021-08-20T12:08:44Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.