Analyzing Advanced AI Systems Against Definitions of Life and Consciousness
- URL: http://arxiv.org/abs/2502.05007v1
- Date: Fri, 07 Feb 2025 15:27:34 GMT
- Title: Analyzing Advanced AI Systems Against Definitions of Life and Consciousness
- Authors: Azadeh Alavi, Hossein Akhoundi, Fatemeh Kouchmeshki,
- Abstract summary: We propose a number of metrics for examining whether an advanced AI system has gained consciousness.
We suggest that sufficiently advanced architectures exhibiting immune like sabotage defenses, mirror self-recognition analogs, or meta-cognitive updates may cross key thresholds akin to life-like or consciousness-like traits.
- Score: 0.0
- License:
- Abstract: Could artificial intelligence ever become truly conscious in a functional sense; this paper explores that open-ended question through the lens of Life, a concept unifying classical biological criteria (Oxford, NASA, Koshland) with empirical hallmarks such as adaptive self maintenance, emergent complexity, and rudimentary self referential modeling. We propose a number of metrics for examining whether an advanced AI system has gained consciousness, while emphasizing that we do not claim all AI stems can become conscious. Rather, we suggest that sufficiently advanced architectures exhibiting immune like sabotage defenses, mirror self-recognition analogs, or meta-cognitive updates may cross key thresholds akin to life-like or consciousness-like traits. To demonstrate these ideas, we start by assessing adaptive self-maintenance capability, and introduce controlled data corruption sabotage into the training process. The result demonstrates AI capability to detect these inconsistencies and revert or self-correct analogous to regenerative biological processes. We also adapt an animal-inspired mirror self recognition test to neural embeddings, finding that partially trained CNNs can distinguish self from foreign features with complete accuracy. We then extend our analysis by performing a question-based mirror test on five state-of-the-art chatbots (ChatGPT4, Gemini, Perplexity, Claude, and Copilot) and demonstrated their ability to recognize their own answers compared to those of the other chatbots.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - The Phenomenology of Machine: A Comprehensive Analysis of the Sentience of the OpenAI-o1 Model Integrating Functionalism, Consciousness Theories, Active Inference, and AI Architectures [0.0]
The OpenAI-o1 model is a transformer-based AI trained with reinforcement learning from human feedback.
We investigate how RLHF influences the model's internal reasoning processes, potentially giving rise to consciousness-like experiences.
Our findings suggest that the OpenAI-o1 model shows aspects of consciousness, while acknowledging the ongoing debates surrounding AI sentience.
arXiv Detail & Related papers (2024-09-18T06:06:13Z) - Is artificial consciousness achievable? Lessons from the human brain [0.0]
We analyse the question of developing artificial consciousness from an evolutionary perspective.
We take the evolution of the human brain and its relation with consciousness as a reference model.
We propose to clearly specify what is common and what differs in AI conscious processing from full human conscious experience.
arXiv Detail & Related papers (2024-04-18T12:59:44Z) - Suffering Toasters -- A New Self-Awareness Test for AI [0.0]
We argue that all current intelligence tests are insufficient to point to the existence or lack of intelligence.
We propose a new approach to test for artificial self-awareness and outline a possible implementation.
arXiv Detail & Related papers (2023-06-29T18:58:01Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Self-mediated exploration in artificial intelligence inspired by
cognitive psychology [1.3351610617039975]
Exploration of the physical environment is an indispensable precursor to data acquisition and enables knowledge generation via analytical or direct trialing.
This work links human behavior and artificial agents to endorse self-development.
A study is subsequently designed to mirror previous human trials, which artificial agents are made to undergo repeatedly towards convergence.
Results demonstrate causality, learned by the vast majority of agents, between their internal states and exploration to match those reported for human counterparts.
arXiv Detail & Related papers (2023-02-13T18:20:44Z) - Conscious AI [6.061244362532694]
Recent advances in artificial intelligence have achieved human-scale speed and accuracy for classification tasks.
Current systems do not need to be conscious to recognize patterns and classify them.
For AI to progress to more complicated tasks requiring intuition and empathy, it must develop capabilities such as metathinking, creativity, and empathy akin to human self-awareness or consciousness.
arXiv Detail & Related papers (2021-05-12T15:53:44Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
Intuitive psychology is the ability to reason about hidden mental variables that drive observable actions.
Despite recent interest in machine agents that reason about other agents, it is not clear if such agents learn or hold the core psychology principles that drive human reasoning.
We present a benchmark consisting of procedurally generated 3D animations, AGENT, structured around four scenarios.
arXiv Detail & Related papers (2021-02-24T14:58:23Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
A fascinating hypothesis is that human and animal intelligence could be explained by a few principles.
This work considers a larger list, focusing on those which concern mostly higher-level and sequential conscious processing.
The objective of clarifying these particular principles is that they could potentially help us build AI systems benefiting from humans' abilities.
arXiv Detail & Related papers (2020-11-30T18:29:25Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.