論文の概要: ChallengeMe: An Adversarial Learning-enabled Text Summarization Framework
- arxiv url: http://arxiv.org/abs/2502.05084v1
- Date: Fri, 07 Feb 2025 16:59:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:58:23.896146
- Title: ChallengeMe: An Adversarial Learning-enabled Text Summarization Framework
- Title(参考訳): ChallengeMe: 逆学習可能なテキスト要約フレームワーク
- Authors: Xiaoyu Deng, Ye Zhang, Tianmin Guo, Yongzhe Zhang, Zhengjian Kang, Hang Yang,
- Abstract要約: 本稿では,逆学習に基づくプロンプトフレームワークであるChallengeMeを構築した。
これには、生成プロンプト、評価プロンプト、フィードバック最適化の3つのケースドソリューションが含まれている。
テキスト要約タスクにおける混合ケーススタディの結果から,提案するフレームワークがより正確で流動的なテキスト要約を生成できることが示唆された。
- 参考スコア(独自算出の注目度): 7.34943328546274
- License:
- Abstract: The astonishing performance of large language models (LLMs) and their remarkable achievements in production and daily life have led to their widespread application in collaborative tasks. However, current large models face challenges such as hallucination and lack of specificity in content generation in vertical domain tasks. Inspired by the contrast and classification mechanisms in human cognitive processes, this paper constructs an adversarial learning-based prompt framework named ChallengeMe, which includes three cascaded solutions: generation prompts, evaluation prompts, and feedback optimization. In this process, we designed seven core optimization dimensions and set the threshold for adversarial learning. The results of mixed case studies on the text summarization task show that the proposed framework can generate more accurate and fluent text summaries compared to the current advanced mainstream LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)の驚くべきパフォーマンスと、生産と日常生活における顕著な成果は、共同作業に広く応用されている。
しかし、現在の大規模モデルは、幻覚や垂直領域タスクにおけるコンテンツ生成の特異性の欠如といった課題に直面している。
本稿では,人間の認知過程におけるコントラストと分類機構に着想を得て,生成プロンプト,評価プロンプト,フィードバック最適化の3つのカスケードソリューションを含む,逆学習に基づくプロンプトフレームワークであるChallengeMeを構築した。
このプロセスでは、7つのコア最適化次元を設計し、逆学習のしきい値を設定する。
テキスト要約タスクにおける混合ケーススタディの結果,提案するフレームワークは,現行の先進的なLCMと比較して,より正確で流動的なテキスト要約を生成可能であることが示された。
関連論文リスト
- Harnessing the Intrinsic Knowledge of Pretrained Language Models for Challenging Text Classification Settings [5.257719744958367]
この論文は、事前学習された言語モデル(PLM)の本質的な知識を活用することによって、テキスト分類における3つの挑戦的な設定を探求する。
本研究では, PLMの文脈表現に基づく特徴量を利用したモデルを構築し, 人間の精度に匹敵する, あるいは超越する性能を実現する。
最後に、実効的な実演を選択することで、大規模言語モデルの文脈内学習プロンプトに対する感受性に取り組む。
論文 参考訳(メタデータ) (2024-08-28T09:07:30Z) - Systematic Task Exploration with LLMs: A Study in Citation Text Generation [63.50597360948099]
大規模言語モデル(LLM)は、複雑な創造的自然言語生成(NLG)タスクの定義と実行において、前例のない柔軟性をもたらす。
本稿では,系統的な入力操作,参照データ,出力測定からなる3成分研究フレームワークを提案する。
我々はこのフレームワークを用いて引用テキスト生成を探索する。これは一般的なNLPタスクであり、タスク定義と評価基準に関するコンセンサスを欠いている。
論文 参考訳(メタデータ) (2024-07-04T16:41:08Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
本研究では,検索強化言語モデルにおける検索情報圧縮のための2段階一貫性学習手法を提案する。
提案手法は複数のデータセットにまたがって実験的に検証され,質問応答タスクの精度と効率が顕著に向上したことを示す。
論文 参考訳(メタデータ) (2024-06-04T12:43:23Z) - Learning Generalizable Human Motion Generator with Reinforcement Learning [95.62084727984808]
テキスト駆動型ヒューマンモーション生成は、コンピュータ支援コンテンツ作成において重要なタスクの1つである。
既存の方法は訓練データ中の特定の動作表現に過度に適合することが多く、一般化する能力を妨げている。
一般化可能なヒューマンモーション生成のための強化学習において,パスとエラーのパラダイムを取り入れた textbfInstructMotion を提案する。
論文 参考訳(メタデータ) (2024-05-24T13:29:12Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
大規模言語モデル(LLM)は画期的な技術として登場し、それらの非並列テキスト生成能力は、基本的な文表現学習タスクへの関心を喚起している。
コーパスを生成するためにLLMの処理を分解するマルチレベルコントラスト文表現学習フレームワークであるMultiCSRを提案する。
実験の結果,MultiCSRはより高度なLCMをChatGPTの性能を超えつつ,ChatGPTに適用することで最先端の成果を得られることがわかった。
論文 参考訳(メタデータ) (2023-10-17T03:21:43Z) - Self-Convinced Prompting: Few-Shot Question Answering with Repeated
Introspection [13.608076739368949]
本稿では,大規模事前学習型言語モデルの可能性を活用する新しいフレームワークを提案する。
我々のフレームワークは、典型的な数発の連鎖プロンプトの出力を処理し、応答の正しさを評価し、回答を精査し、最終的には新しい解を生成する。
論文 参考訳(メタデータ) (2023-10-08T06:36:26Z) - Investigating the Efficacy of Large Language Models in Reflective
Assessment Methods through Chain of Thoughts Prompting [0.2552922646705803]
複雑な推論タスクにおけるLLMの習熟度を高める手段として、Chain of Thought(CoT)プロンプト法が提案されている。
本研究の主な目的は、4つの言語モデルが3年制医学生の振り返りエッセイをいかに評価できるかを評価することである。
論文 参考訳(メタデータ) (2023-09-30T06:25:27Z) - Factually Consistent Summarization via Reinforcement Learning with
Textual Entailment Feedback [57.816210168909286]
我々は,この問題を抽象的な要約システムで解くために,テキストエンテーメントモデルの最近の進歩を活用している。
我々は、事実整合性を最適化するために、レファレンスフリーのテキストエンターメント報酬を用いた強化学習を用いる。
自動測定と人的評価の両結果から,提案手法は生成した要約の忠実さ,サリエンス,簡潔さを著しく向上させることが示された。
論文 参考訳(メタデータ) (2023-05-31T21:04:04Z) - Large Language Models are Diverse Role-Players for Summarization
Evaluation [82.31575622685902]
文書要約の品質は、文法や正しさといった客観的な基準と、情報性、簡潔さ、魅力といった主観的な基準で人間の注釈者によって評価することができる。
BLUE/ROUGEのような自動評価手法のほとんどは、上記の次元を適切に捉えることができないかもしれない。
目的と主観の両面から生成されたテキストと参照テキストを比較し,総合的な評価フレームワークを提供するLLMに基づく新しい評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-27T10:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。