Self-supervised Conformal Prediction for Uncertainty Quantification in Imaging Problems
- URL: http://arxiv.org/abs/2502.05127v1
- Date: Fri, 07 Feb 2025 18:00:36 GMT
- Title: Self-supervised Conformal Prediction for Uncertainty Quantification in Imaging Problems
- Authors: Jasper M. Everink, Bernardin Tamo Amougou, Marcelo Pereyra,
- Abstract summary: Most image restoration problems are ill-conditioned or ill-posed.
Most existing image restoration methods either fail to quantify uncertainty or provide estimates that are highly inaccurate.
This paper proposes a self-supervised conformal prediction method that leverages Stein's Unbiased Risk Estimator.
- Score: 0.18434042562191813
- License:
- Abstract: Most image restoration problems are ill-conditioned or ill-posed and hence involve significant uncertainty. Quantifying this uncertainty is crucial for reliably interpreting experimental results, particularly when reconstructed images inform critical decisions and science. However, most existing image restoration methods either fail to quantify uncertainty or provide estimates that are highly inaccurate. Conformal prediction has recently emerged as a flexible framework to equip any estimator with uncertainty quantification capabilities that, by construction, have nearly exact marginal coverage. To achieve this, conformal prediction relies on abundant ground truth data for calibration. However, in image restoration problems, reliable ground truth data is often expensive or not possible to acquire. Also, reliance on ground truth data can introduce large biases in situations of distribution shift between calibration and deployment. This paper seeks to develop a more robust approach to conformal prediction for image restoration problems by proposing a self-supervised conformal prediction method that leverages Stein's Unbiased Risk Estimator (SURE) to self-calibrate itself directly from the observed noisy measurements, bypassing the need for ground truth. The method is suitable for any linear imaging inverse problem that is ill-conditioned, and it is especially powerful when used with modern self-supervised image restoration techniques that can also be trained directly from measurement data. The proposed approach is demonstrated through numerical experiments on image denoising and deblurring, where it delivers results that are remarkably accurate and comparable to those obtained by supervised conformal prediction with ground truth data.
Related papers
- Uncertainty Quantification in Stereo Matching [61.73532883992135]
We propose a new framework for stereo matching and its uncertainty quantification.
We adopt Bayes risk as a measure of uncertainty and estimate data and model uncertainty separately.
We apply our uncertainty method to improve prediction accuracy by selecting data points with small uncertainties.
arXiv Detail & Related papers (2024-12-24T23:28:20Z) - Deep priors for satellite image restoration with accurate uncertainties [4.879530644978008]
We propose a generic method involving a single network to restore images from several sensors.
VBLE-xz is a scalable method to get realistic posterior samples and accurate uncertainties.
SatDPIR is a compelling alternative to direct inversion methods when uncertainty is not required.
arXiv Detail & Related papers (2024-12-05T12:56:03Z) - Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.
Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.
We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
arXiv Detail & Related papers (2024-10-13T15:37:11Z) - Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation [12.625383613718636]
We propose an unsupervised approach using maximum marginal likelihood estimation to train a convex neural network-based image regularization term directly on noisy measurements.
Experiments demonstrate that the proposed method produces priors that are near competitive when compared to the analogous supervised training method for various image corruption operators.
arXiv Detail & Related papers (2024-04-08T12:27:00Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
We find a general, widely existing but actually-neglected phenomenon that most confidence estimation methods are harmful for detecting misclassification errors.
We propose to enlarge the confidence gap by finding flat minima, which yields state-of-the-art failure prediction performance.
arXiv Detail & Related papers (2024-03-05T11:44:14Z) - On the Quantification of Image Reconstruction Uncertainty without
Training Data [5.057039869893053]
We propose a deep variational framework that leverages a deep generative model to learn an approximate posterior distribution.
We parameterize the target posterior using a flow-based model and minimize their Kullback-Leibler (KL) divergence to achieve accurate uncertainty estimation.
Our results indicate that our method provides reliable and high-quality image reconstruction with robust uncertainty estimation.
arXiv Detail & Related papers (2023-11-16T07:46:47Z) - Equivariant Bootstrapping for Uncertainty Quantification in Imaging
Inverse Problems [0.24475591916185502]
We present a new uncertainty quantification methodology based on an equivariant formulation of the parametric bootstrap algorithm.
The proposed methodology is general and can be easily applied with any image reconstruction technique.
We demonstrate the proposed approach with a series of numerical experiments and through comparisons with alternative uncertainty quantification strategies.
arXiv Detail & Related papers (2023-10-18T09:43:15Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Learning Accurate Dense Correspondences and When to Trust Them [161.76275845530964]
We aim to estimate a dense flow field relating two images, coupled with a robust pixel-wise confidence map.
We develop a flexible probabilistic approach that jointly learns the flow prediction and its uncertainty.
Our approach obtains state-of-the-art results on challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-01-05T18:54:11Z) - Improving model calibration with accuracy versus uncertainty
optimization [17.056768055368384]
A well-calibrated model should be accurate when it is certain about its prediction and indicate high uncertainty when it is likely to be inaccurate.
We propose an optimization method that leverages the relationship between accuracy and uncertainty as an anchor for uncertainty calibration.
We demonstrate our approach with mean-field variational inference and compare with state-of-the-art methods.
arXiv Detail & Related papers (2020-12-14T20:19:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.