論文の概要: Joint MoE Scaling Laws: Mixture of Experts Can Be Memory Efficient
- arxiv url: http://arxiv.org/abs/2502.05172v1
- Date: Fri, 07 Feb 2025 18:55:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:58:50.934733
- Title: Joint MoE Scaling Laws: Mixture of Experts Can Be Memory Efficient
- Title(参考訳): 共同 MoE スケーリングの法則: 専門家の混在はメモリ効率が良い
- Authors: Jan Ludziejewski, Maciej Pióro, Jakub Krajewski, Maciej Stefaniak, Michał Krutul, Jan Małaśnicki, Marek Cygan, Piotr Sankowski, Kamil Adamczewski, Piotr Miłoś, Sebastian Jaszczur,
- Abstract要約: 我々は,高密度モデルとMoEモデルに対する共同スケーリング法則を提案し,アクティブパラメータ数,データセットサイズ,エキスパート数といった重要な要素を取り入れた。
驚くべきことに、従来の知恵とは対照的に、MoEモデルは高密度モデルよりもメモリ効率が高いことが示される。
- 参考スコア(独自算出の注目度): 4.34286535607654
- License:
- Abstract: Mixture of Experts (MoE) architectures have significantly increased computational efficiency in both research and real-world applications of large-scale machine learning models. However, their scalability and efficiency under memory constraints remain relatively underexplored. In this work, we present joint scaling laws for dense and MoE models, incorporating key factors such as the number of active parameters, dataset size, and the number of experts. Our findings provide a principled framework for selecting the optimal MoE configuration under fixed memory and compute budgets. Surprisingly, we show that MoE models can be more memory-efficient than dense models, contradicting conventional wisdom. To derive and validate the theoretical predictions of our scaling laws, we conduct over 280 experiments with up to 2.7B active parameters and up to 5B total parameters. These results offer actionable insights for designing and deploying MoE models in practical large-scale training scenarios.
- Abstract(参考訳): Mixture of Experts (MoE)アーキテクチャは、大規模機械学習モデルの研究および実世界の応用において、計算効率を著しく向上させた。
しかし、メモリ制約下でのスケーラビリティと効率性は、まだ明らかにされていない。
本研究では,高密度モデルとMoEモデルに対する共同スケーリング法則を提案し,アクティブパラメータ数,データセットサイズ,エキスパート数などの重要な要素を取り入れた。
本研究は,メモリと計算予算の下で最適なMoE構成を選択するための基本的フレームワークを提供する。
驚くべきことに、従来の知恵とは対照的に、MoEモデルは高密度モデルよりもメモリ効率が高いことが示される。
スケーリング法則の理論的予測を導出し、検証するために、最大2.7Bの活性パラメータと最大5Bの総パラメータを持つ280以上の実験を行った。
これらの結果は、実践的な大規模トレーニングシナリオにおいて、MoEモデルを設計およびデプロイするための実用的な洞察を提供する。
関連論文リスト
- PERFT: Parameter-Efficient Routed Fine-Tuning for Mixture-of-Expert Model [30.620582168350698]
Mixture-of-Experts (MoE) は、リソース利用を改善することでトランスフォーマーをスケールするための強力なアプローチとして登場した。
PEFT(Efficient Fine-Tuning)に関する最近の研究から着想を得て,PEFTモジュールを直接MoE機構に統合するための統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-12T22:03:37Z) - Scaling Laws Across Model Architectures: A Comparative Analysis of Dense and MoE Models in Large Language Models [34.79589443380606]
大規模言語モデル(LLM)のスケーリングは、モデルトレーニングとデプロイメントの効率性と効率性にとって重要な研究領域である。
本研究は,Dense Models と MoE Model のスケーリング法則の伝達性と相違について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:21:56Z) - A Provably Effective Method for Pruning Experts in Fine-tuned Sparse Mixture-of-Experts [49.394145046409044]
本論文は,MoEモデルにおけるエキスパートの刈り取りに有効な手法として,初めて提案するものである。
理論的には、事前訓練されたモデルからルータl2ノルムを小さく変更することで、専門家のプルーニングを優先順位付けすることで、テスト精度の維持が保証される。
我々の理論解析は、単純化されたMoEアーキテクチャ上でのバイナリ分類タスクに重点を置いているが、我々の専門的なプルーニング手法は、大きな視覚的MoEモデルに基づいて検証されている。
論文 参考訳(メタデータ) (2024-05-26T17:52:58Z) - SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts [49.01990048827639]
本稿では,事前学習したMoEモデルのメモリフットプリントと計算要求の両方を削減するためのフレームワークSEER-MoEを紹介する。
第1段階では、ヘビーヒッターズカウントガイダンスを使用して専門家の総数を計算し、第2段階では、正則化に基づく微調整戦略を使用して精度の低下を回復する。
実験により,提案手法の有効性を実証し,精度のトレードオフを最小限に抑えた推論効率に最適化したMoEsモデルを試作した。
論文 参考訳(メタデータ) (2024-04-07T22:13:43Z) - Mixtures of Experts Unlock Parameter Scaling for Deep RL [54.26191237981469]
本稿では,Mixture-of-Expert(MoE)モジュールを値ベースネットワークに組み込むことで,パラメータスケーラブルなモデルが得られることを示す。
この研究は、強化学習のためのスケーリング法則の開発に関する強力な実証的証拠を提供する。
論文 参考訳(メタデータ) (2024-02-13T17:18:56Z) - Scaling Laws for Fine-Grained Mixture of Experts [4.412803924115907]
ミキチャー・オブ・エキスパート(MoE)モデルは、大規模言語モデルの計算コストを削減するための主要なソリューションとして登場した。
本研究では,拡張変数を組み込んだスケーリング特性の解析を行う。
トレーニングトークンの数、モデルサイズ、粒度を考慮して、粒度の細かいMoEのスケーリング法則を確立します。
論文 参考訳(メタデータ) (2024-02-12T18:33:47Z) - Efficient Large Scale Language Modeling with Mixtures of Experts [61.45159383372181]
エキスパート層(MoE)の混合により、条件付き計算による言語モデルの効率的なスケーリングが可能になる。
本稿では, 自己回帰型 MoE 言語モデルが, 広範囲な環境下での高密度モデルと比較して, どのようにスケールするかを示す実験的検討を行った。
論文 参考訳(メタデータ) (2021-12-20T17:05:11Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
このようなモデルの2つの一般的なクラス、すなわちニューラルネットワークのアンサンブルと専門家のスパースミックス(スパースMoE)の相互作用について研究する。
Efficient Ensemble of Experts (E$3$)は、両モデルのクラスを最大限に活用するスケーラブルでシンプルなMoEのアンサンブルであり、深いアンサンブルよりも最大45%少ないFLOPを使用する。
論文 参考訳(メタデータ) (2021-10-07T11:58:35Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。