Aero-LLM: A Distributed Framework for Secure UAV Communication and Intelligent Decision-Making
- URL: http://arxiv.org/abs/2502.05220v1
- Date: Wed, 05 Feb 2025 15:46:27 GMT
- Title: Aero-LLM: A Distributed Framework for Secure UAV Communication and Intelligent Decision-Making
- Authors: Balakrishnan Dharmalingam, Rajdeep Mukherjee, Brett Piggott, Guohuan Feng, Anyi Liu,
- Abstract summary: Aero-LLM is a framework integrating multiple Large Language Models (LLMs) to enhance UAV mission security and operational efficiency.
This paper introduces Aero-LLM, a framework integrating multiple Large Language Models (LLMs) to enhance UAV mission security and operational efficiency.
- Score: 4.199611104702409
- License:
- Abstract: Increased utilization of unmanned aerial vehicles (UAVs) in critical operations necessitates secure and reliable communication with Ground Control Stations (GCS). This paper introduces Aero-LLM, a framework integrating multiple Large Language Models (LLMs) to enhance UAV mission security and operational efficiency. Unlike conventional singular LLMs, Aero-LLM leverages multiple specialized LLMs for various tasks, such as inferencing, anomaly detection, and forecasting, deployed across onboard systems, edge, and cloud servers. This dynamic, distributed architecture reduces performance bottleneck and increases security capabilities. Aero-LLM's evaluation demonstrates outstanding task-specific metrics and robust defense against cyber threats, significantly enhancing UAV decision-making and operational capabilities and security resilience against cyber attacks, setting a new standard for secure, intelligent UAV operations.
Related papers
- Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.
In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.
The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - UAVs Meet LLMs: Overviews and Perspectives Toward Agentic Low-Altitude Mobility [33.73170899086857]
Low-altitude mobility, exemplified by unmanned aerial vehicles (UAVs), has introduced transformative advancements across various domains.
This paper explores the integration of large language models (LLMs) and UAVs.
It categorizes and analyzes key tasks and application scenarios where UAVs and LLMs converge.
arXiv Detail & Related papers (2025-01-04T17:32:12Z) - Defining and Evaluating Physical Safety for Large Language Models [62.4971588282174]
Large Language Models (LLMs) are increasingly used to control robotic systems such as drones.
Their risks of causing physical threats and harm in real-world applications remain unexplored.
We classify the physical safety risks of drones into four categories: (1) human-targeted threats, (2) object-targeted threats, (3) infrastructure attacks, and (4) regulatory violations.
arXiv Detail & Related papers (2024-11-04T17:41:25Z) - Toward Mixture-of-Experts Enabled Trustworthy Semantic Communication for 6G Networks [82.3753728955968]
We introduce a novel Mixture-of-Experts (MoE)-based SemCom system.
This system comprises a gating network and multiple experts, each specializing in different security challenges.
The gating network adaptively selects suitable experts to counter heterogeneous attacks based on user-defined security requirements.
A case study in vehicular networks demonstrates the efficacy of the MoE-based SemCom system.
arXiv Detail & Related papers (2024-09-24T03:17:51Z) - Cooperative Cognitive Dynamic System in UAV Swarms: Reconfigurable Mechanism and Framework [80.39138462246034]
We propose the cooperative cognitive dynamic system (CCDS) to optimize the management for UAV swarms.
CCDS is a hierarchical and cooperative control structure that enables real-time data processing and decision.
In addition, CCDS can be integrated with the biomimetic mechanism to efficiently allocate tasks for UAV swarms.
arXiv Detail & Related papers (2024-05-18T12:45:00Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Securing the Skies: An IRS-Assisted AoI-Aware Secure Multi-UAV System with Efficient Task Offloading [3.427366431933441]
Our framework incorporates exponential AoI metrics and emphasizes secrecy rate to tackle eavesdropping and jamming threats.
We introduce a transformer-enhanced Deep Reinforcement Learning (DRL) approach to optimize task offloading processes.
arXiv Detail & Related papers (2024-04-06T17:41:00Z) - MADRL-based UAVs Trajectory Design with Anti-Collision Mechanism in
Vehicular Networks [1.9662978733004604]
In upcoming 6G networks, unmanned aerial vehicles (UAVs) are expected to play a fundamental role by acting as mobile base stations.
One of the most challenging problems is the design of trajectories for multiple UAVs, cooperatively serving the same area.
We propose a rank-based binary masking approach to address these issues.
arXiv Detail & Related papers (2024-01-21T20:08:32Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
Unmanned aerial vehicles (UAV) as aerial relays are practically appealing for assisting Internet Things (IoT) network.
In this work, we aim to utilize the UAV to assist secure communication between the UAV base station and terminal terminal devices.
arXiv Detail & Related papers (2023-10-03T11:47:01Z) - Toward collision-free trajectory for autonomous and pilot-controlled
unmanned aerial vehicles [1.018017727755629]
This study makes greater use of electronic conspicuity (EC) information made available by PilotAware Ltd in developing an advanced collision management methodology.
The merits of the DACM methodology have been demonstrated through extensive simulations and real-world field tests in avoiding mid-air collisions.
arXiv Detail & Related papers (2023-09-18T18:24:31Z) - A Survey of Security in UAVs and FANETs: Issues, Threats, Analysis of Attacks, and Solutions [1.0923877073891446]
It is critical that security is ensured for UAVs and the networks that provide communication between UAVs.
This survey seeks to provide a comprehensive perspective on security within the domain of UAVs and Flying Ad Hoc Networks (FANETs)
arXiv Detail & Related papers (2023-06-25T16:15:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.