UAVs Meet LLMs: Overviews and Perspectives Toward Agentic Low-Altitude Mobility
- URL: http://arxiv.org/abs/2501.02341v1
- Date: Sat, 04 Jan 2025 17:32:12 GMT
- Title: UAVs Meet LLMs: Overviews and Perspectives Toward Agentic Low-Altitude Mobility
- Authors: Yonglin Tian, Fei Lin, Yiduo Li, Tengchao Zhang, Qiyao Zhang, Xuan Fu, Jun Huang, Xingyuan Dai, Yutong Wang, Chunwei Tian, Bai Li, Yisheng Lv, Levente Kovács, Fei-Yue Wang,
- Abstract summary: Low-altitude mobility, exemplified by unmanned aerial vehicles (UAVs), has introduced transformative advancements across various domains.
This paper explores the integration of large language models (LLMs) and UAVs.
It categorizes and analyzes key tasks and application scenarios where UAVs and LLMs converge.
- Score: 33.73170899086857
- License:
- Abstract: Low-altitude mobility, exemplified by unmanned aerial vehicles (UAVs), has introduced transformative advancements across various domains, like transportation, logistics, and agriculture. Leveraging flexible perspectives and rapid maneuverability, UAVs extend traditional systems' perception and action capabilities, garnering widespread attention from academia and industry. However, current UAV operations primarily depend on human control, with only limited autonomy in simple scenarios, and lack the intelligence and adaptability needed for more complex environments and tasks. The emergence of large language models (LLMs) demonstrates remarkable problem-solving and generalization capabilities, offering a promising pathway for advancing UAV intelligence. This paper explores the integration of LLMs and UAVs, beginning with an overview of UAV systems' fundamental components and functionalities, followed by an overview of the state-of-the-art in LLM technology. Subsequently, it systematically highlights the multimodal data resources available for UAVs, which provide critical support for training and evaluation. Furthermore, it categorizes and analyzes key tasks and application scenarios where UAVs and LLMs converge. Finally, a reference roadmap towards agentic UAVs is proposed, aiming to enable UAVs to achieve agentic intelligence through autonomous perception, memory, reasoning, and tool utilization. Related resources are available at https://github.com/Hub-Tian/UAVs_Meet_LLMs.
Related papers
- Integrating Large Language Models for UAV Control in Simulated Environments: A Modular Interaction Approach [0.3495246564946556]
This study explores the application of Large Language Models in UAV control.
By enabling UAVs to interpret and respond to natural language commands, LLMs simplify the UAV control and usage.
The paper discusses several key areas where LLMs can impact UAV technology, including autonomous decision-making, dynamic mission planning, enhanced situational awareness, and improved safety protocols.
arXiv Detail & Related papers (2024-10-23T06:56:53Z) - Towards Realistic UAV Vision-Language Navigation: Platform, Benchmark, and Methodology [38.2096731046639]
Recent efforts in UAV vision-language navigation predominantly adopt ground-based VLN settings.
We propose solutions from three perspectives: platform, benchmark, and methodology.
arXiv Detail & Related papers (2024-10-09T17:29:01Z) - Large Language Models for UAVs: Current State and Pathways to the Future [6.85423435360359]
Unmanned Aerial Vehicles (UAVs) have emerged as a transformative technology across diverse sectors.
This work explores the significant potential of integrating UAVs and Large Language Models (LLMs) to propel the development of autonomous systems.
arXiv Detail & Related papers (2024-05-02T21:30:10Z) - Evidential Detection and Tracking Collaboration: New Problem, Benchmark
and Algorithm for Robust Anti-UAV System [56.51247807483176]
Unmanned Aerial Vehicles (UAVs) have been widely used in many areas, including transportation, surveillance, and military.
Previous works have simplified such an anti-UAV task as a tracking problem, where prior information of UAVs is always provided.
In this paper, we first formulate a new and practical anti-UAV problem featuring the UAVs perception in complex scenes without prior UAVs information.
arXiv Detail & Related papers (2023-06-27T19:30:23Z) - Distributed Machine Learning for UAV Swarms: Computing, Sensing, and
Semantics [31.921859542234998]
Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking.
We first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning.
Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications.
arXiv Detail & Related papers (2023-01-03T01:05:18Z) - Machine Learning-Aided Operations and Communications of Unmanned Aerial
Vehicles: A Contemporary Survey [43.573379573511765]
The ongoing amalgamation of UAV and ML techniques is creating a significant synergy and empowering UAVs with unprecedented intelligence and autonomy.
This survey aims to provide a timely and comprehensive overview of ML techniques used in UAV operations and communications.
arXiv Detail & Related papers (2022-11-07T15:34:36Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV) offers lots of applications in both commerce and recreation.
We consider the task of tracking UAVs, providing rich information such as location and trajectory.
We propose a dataset, Anti-UAV, with more than 300 video pairs containing over 580k manually annotated bounding boxes.
arXiv Detail & Related papers (2021-01-21T07:00:15Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks.
Artificial intelligence (AI) is growing rapidly nowadays and has been very successful.
We provide a comprehensive overview of some potential applications of AI in UAV-based networks.
arXiv Detail & Related papers (2020-09-24T07:11:31Z) - Artificial Intelligence Aided Next-Generation Networks Relying on UAVs [140.42435857856455]
Artificial intelligence (AI) assisted unmanned aerial vehicle (UAV) aided next-generation networking is proposed for dynamic environments.
In the AI-enabled UAV-aided wireless networks (UAWN), multiple UAVs are employed as aerial base stations, which are capable of rapidly adapting to the dynamic environment.
As a benefit of the AI framework, several challenges of conventional UAWN may be circumvented, leading to enhanced network performance, improved reliability and agile adaptivity.
arXiv Detail & Related papers (2020-01-28T15:10:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.