A Survey on Backdoor Threats in Large Language Models (LLMs): Attacks, Defenses, and Evaluations
- URL: http://arxiv.org/abs/2502.05224v1
- Date: Thu, 06 Feb 2025 04:43:05 GMT
- Title: A Survey on Backdoor Threats in Large Language Models (LLMs): Attacks, Defenses, and Evaluations
- Authors: Yihe Zhou, Tao Ni, Wei-Bin Lee, Qingchuan Zhao,
- Abstract summary: We adapt the general taxonomy for classifying machine learning attacks on one of the subdivisions - training-time white-box backdoor attacks.
We also consider the corresponding defense methods against backdoor attacks.
- Score: 4.332547891216645
- License:
- Abstract: Large Language Models (LLMs) have achieved significantly advanced capabilities in understanding and generating human language text, which have gained increasing popularity over recent years. Apart from their state-of-the-art natural language processing (NLP) performance, considering their widespread usage in many industries, including medicine, finance, education, etc., security concerns over their usage grow simultaneously. In recent years, the evolution of backdoor attacks has progressed with the advancement of defense mechanisms against them and more well-developed features in the LLMs. In this paper, we adapt the general taxonomy for classifying machine learning attacks on one of the subdivisions - training-time white-box backdoor attacks. Besides systematically classifying attack methods, we also consider the corresponding defense methods against backdoor attacks. By providing an extensive summary of existing works, we hope this survey can serve as a guideline for inspiring future research that further extends the attack scenarios and creates a stronger defense against them for more robust LLMs.
Related papers
- Jailbreaking and Mitigation of Vulnerabilities in Large Language Models [4.564507064383306]
Large Language Models (LLMs) have transformed artificial intelligence by advancing natural language understanding and generation.
Despite these advancements, LLMs have shown considerable vulnerabilities, particularly to prompt injection and jailbreaking attacks.
This review analyzes the state of research on these vulnerabilities and presents available defense strategies.
arXiv Detail & Related papers (2024-10-20T00:00:56Z) - Recent advancements in LLM Red-Teaming: Techniques, Defenses, and Ethical Considerations [0.0]
Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language processing tasks, but their vulnerability to jailbreak attacks poses significant security risks.
This survey paper presents a comprehensive analysis of recent advancements in attack strategies and defense mechanisms within the field of Large Language Model (LLM) red-teaming.
arXiv Detail & Related papers (2024-10-09T01:35:38Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding and reasoning tasks.
The vulnerability of LVLMs is relatively underexplored, posing potential security risks in daily usage.
In this paper, we provide a comprehensive review of the various forms of existing LVLM attacks.
arXiv Detail & Related papers (2024-07-10T06:57:58Z) - A Survey of Recent Backdoor Attacks and Defenses in Large Language Models [28.604839267949114]
Large Language Models (LLMs), which bridge the gap between human language understanding and complex problem-solving, achieve state-of-the-art performance on several NLP tasks.
Research has demonstrated that language models are susceptible to potential security vulnerabilities, particularly in backdoor attacks.
This paper presents a novel perspective on backdoor attacks for LLMs by focusing on fine-tuning methods.
arXiv Detail & Related papers (2024-06-10T23:54:21Z) - TuBA: Cross-Lingual Transferability of Backdoor Attacks in LLMs with Instruction Tuning [63.481446315733145]
Cross-lingual backdoor attacks against multilingual large language models (LLMs) are under-explored.
Our research focuses on how poisoning the instruction-tuning data for one or two languages can affect the outputs for languages whose instruction-tuning data were not poisoned.
Our method exhibits remarkable efficacy in models like mT5 and GPT-4o, with high attack success rates, surpassing 90% in more than 7 out of 12 languages.
arXiv Detail & Related papers (2024-04-30T14:43:57Z) - A Comprehensive Survey of Attack Techniques, Implementation, and Mitigation Strategies in Large Language Models [0.0]
This article explores two attack categories: attacks on models themselves and attacks on model applications.
The former requires expertise, access to model data, and significant implementation time.
The latter is more accessible to attackers and has seen increased attention.
arXiv Detail & Related papers (2023-12-18T07:07:32Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Backdoor Attacks and Countermeasures in Natural Language Processing Models: A Comprehensive Security Review [15.179940846141873]
Language Models (LMs) are becoming increasingly popular in real-world applications.
Backdoor attacks are a serious threat where malicious behavior is activated when triggers are present.
This work aims to provide the NLP community with a timely review of backdoor attacks and countermeasures.
arXiv Detail & Related papers (2023-09-12T08:48:38Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
Recent work shows that text moderations can produce jailbreaking prompts that bypass defenses.
We look at three types of defenses: detection (perplexity based), input preprocessing (paraphrase and retokenization), and adversarial training.
We find that the weakness of existing discretes for text, combined with the relatively high costs of optimization, makes standard adaptive attacks more challenging for LLMs.
arXiv Detail & Related papers (2023-09-01T17:59:44Z) - Turn the Combination Lock: Learnable Textual Backdoor Attacks via Word
Substitution [57.51117978504175]
Recent studies show that neural natural language processing (NLP) models are vulnerable to backdoor attacks.
Injected with backdoors, models perform normally on benign examples but produce attacker-specified predictions when the backdoor is activated.
We present invisible backdoors that are activated by a learnable combination of word substitution.
arXiv Detail & Related papers (2021-06-11T13:03:17Z) - Backdoor Learning: A Survey [75.59571756777342]
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs)
Backdoor learning is an emerging and rapidly growing research area.
This paper presents the first comprehensive survey of this realm.
arXiv Detail & Related papers (2020-07-17T04:09:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.