Backdoor Attacks and Countermeasures in Natural Language Processing Models: A Comprehensive Security Review
- URL: http://arxiv.org/abs/2309.06055v5
- Date: Wed, 04 Dec 2024 05:04:46 GMT
- Title: Backdoor Attacks and Countermeasures in Natural Language Processing Models: A Comprehensive Security Review
- Authors: Pengzhou Cheng, Zongru Wu, Wei Du, Haodong Zhao, Wei Lu, Gongshen Liu,
- Abstract summary: Language Models (LMs) are becoming increasingly popular in real-world applications.<n>Backdoor attacks are a serious threat where malicious behavior is activated when triggers are present.<n>This work aims to provide the NLP community with a timely review of backdoor attacks and countermeasures.
- Score: 15.179940846141873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language Models (LMs) are becoming increasingly popular in real-world applications. Outsourcing model training and data hosting to third-party platforms has become a standard method for reducing costs. In such a situation, the attacker can manipulate the training process or data to inject a backdoor into models. Backdoor attacks are a serious threat where malicious behavior is activated when triggers are present, otherwise, the model operates normally. However, there is still no systematic and comprehensive review of LMs from the attacker's capabilities and purposes on different backdoor attack surfaces. Moreover, there is a shortage of analysis and comparison of the diverse emerging backdoor countermeasures. Therefore, this work aims to provide the NLP community with a timely review of backdoor attacks and countermeasures. According to the attackers' capability and affected stage of the LMs, the attack surfaces are formalized into four categorizations: attacking the pre-trained model with fine-tuning (APMF) or parameter-efficient fine-tuning (APMP), attacking the final model with training (AFMT), and attacking Large Language Models (ALLM). Thus, attacks under each categorization are combed. The countermeasures are categorized into two general classes: sample inspection and model inspection. Thus, we review countermeasures and analyze their advantages and disadvantages. Also, we summarize the benchmark datasets and provide comparable evaluations for representative attacks and defenses. Drawing the insights from the review, we point out the crucial areas for future research on the backdoor, especially soliciting more efficient and practical countermeasures.
Related papers
- Revisiting Backdoor Attacks against Large Vision-Language Models from Domain Shift [104.76588209308666]
This paper explores backdoor attacks in LVLM instruction tuning across mismatched training and testing domains.
We introduce a new evaluation dimension, backdoor domain generalization, to assess attack robustness.
We propose a multimodal attribution backdoor attack (MABA) that injects domain-agnostic triggers into critical areas.
arXiv Detail & Related papers (2024-06-27T02:31:03Z) - A Survey of Backdoor Attacks and Defenses on Large Language Models: Implications for Security Measures [28.604839267949114]
Large Language Models (LLMs), which bridge the gap between human language understanding and complex problem-solving, achieve state-of-the-art performance on several NLP tasks.
Research has demonstrated that language models are susceptible to potential security vulnerabilities, particularly in backdoor attacks.
This paper presents a novel perspective on backdoor attacks for LLMs by focusing on fine-tuning methods.
arXiv Detail & Related papers (2024-06-10T23:54:21Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Rethinking Backdoor Attacks [122.1008188058615]
In a backdoor attack, an adversary inserts maliciously constructed backdoor examples into a training set to make the resulting model vulnerable to manipulation.
Defending against such attacks typically involves viewing these inserted examples as outliers in the training set and using techniques from robust statistics to detect and remove them.
We show that without structural information about the training data distribution, backdoor attacks are indistinguishable from naturally-occurring features in the data.
arXiv Detail & Related papers (2023-07-19T17:44:54Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - On the Vulnerability of Backdoor Defenses for Federated Learning [8.345632941376673]
Federated Learning (FL) is a popular distributed machine learning paradigm that enables jointly training a global model without sharing clients' data.
In this paper, we study whether the current defense mechanisms truly neutralize the backdoor threats from federated learning.
We propose a new federated backdoor attack method for possible countermeasures.
arXiv Detail & Related papers (2023-01-19T17:02:02Z) - A Survey on Backdoor Attack and Defense in Natural Language Processing [18.29835890570319]
We conduct a comprehensive review of backdoor attacks and defenses in the field of NLP.
We summarize benchmark datasets and point out the open issues to design credible systems to defend against backdoor attacks.
arXiv Detail & Related papers (2022-11-22T02:35:12Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Backdoor Attacks on Crowd Counting [63.90533357815404]
Crowd counting is a regression task that estimates the number of people in a scene image.
In this paper, we investigate the vulnerability of deep learning based crowd counting models to backdoor attacks.
arXiv Detail & Related papers (2022-07-12T16:17:01Z) - A Unified Evaluation of Textual Backdoor Learning: Frameworks and
Benchmarks [72.7373468905418]
We develop an open-source toolkit OpenBackdoor to foster the implementations and evaluations of textual backdoor learning.
We also propose CUBE, a simple yet strong clustering-based defense baseline.
arXiv Detail & Related papers (2022-06-17T02:29:23Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
A backdoored model always predicts a target class in the presence of a predefined trigger pattern.
In general, adversarial training is believed to defend against backdoor attacks.
We propose a hybrid strategy which provides satisfactory robustness across different backdoor attacks.
arXiv Detail & Related papers (2022-02-22T02:24:46Z) - An Overview of Backdoor Attacks Against Deep Neural Networks and
Possible Defences [33.415612094924654]
The goal of this paper is to review the different types of attacks and defences proposed so far.
In a backdoor attack, the attacker corrupts the training data so to induce an erroneous behaviour at test time.
Test time errors are activated only in the presence of a triggering event corresponding to a properly crafted input sample.
arXiv Detail & Related papers (2021-11-16T13:06:31Z) - WaNet -- Imperceptible Warping-based Backdoor Attack [20.289889150949836]
A third-party model can be poisoned in training to work well in normal conditions but behave maliciously when a trigger pattern appears.
In this paper, we propose using warping-based triggers to attack third-party models.
The proposed backdoor outperforms the previous methods in a human inspection test by a wide margin, proving its stealthiness.
arXiv Detail & Related papers (2021-02-20T15:25:36Z) - Backdoor Attacks and Countermeasures on Deep Learning: A Comprehensive
Review [40.36824357892676]
This work provides the community with a timely comprehensive review of backdoor attacks and countermeasures on deep learning.
According to the attacker's capability and affected stage of the machine learning pipeline, the attack surfaces are recognized to be wide.
Countermeasures are categorized into four general classes: blind backdoor removal, offline backdoor inspection, online backdoor inspection, and post backdoor removal.
arXiv Detail & Related papers (2020-07-21T12:49:12Z) - Backdoor Learning: A Survey [75.59571756777342]
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs)
Backdoor learning is an emerging and rapidly growing research area.
This paper presents the first comprehensive survey of this realm.
arXiv Detail & Related papers (2020-07-17T04:09:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.