論文の概要: Hierarchical Lexical Manifold Projection in Large Language Models: A Novel Mechanism for Multi-Scale Semantic Representation
- arxiv url: http://arxiv.org/abs/2502.05395v1
- Date: Sat, 08 Feb 2025 00:49:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:33:05.456341
- Title: Hierarchical Lexical Manifold Projection in Large Language Models: A Novel Mechanism for Multi-Scale Semantic Representation
- Title(参考訳): 大規模言語モデルにおける階層的語彙的多様体射影:マルチスケール意味表現の新しいメカニズム
- Authors: Natasha Martus, Sebastian Crowther, Maxwell Dorrington, Jonathan Applethwaite, Edgar Tillinghurst, Quentin Birkenshaw, Lukas Petrov, Constance Willoughby,
- Abstract要約: 構造的階層的埋め込みをトランスフォーマーベースのアーキテクチャに統合することで、語彙表現に対する洗練されたアプローチが導入された。
トークンを構造化多様体にマッピングする射影機構は、改善された語彙アライメントを提供する。
埋め込みの洗練された階層構造は、語彙モデリングにおいてより大きな解釈可能性をもたらす。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The integration of structured hierarchical embeddings into transformer-based architectures introduces a refined approach to lexical representation, ensuring that multi-scale semantic relationships are preserved without compromising computational efficiency. A projection mechanism that maps tokens onto a structured manifold provides improved lexical alignment, enhancing the adaptability of word representations across diverse linguistic tasks. The structured encoding framework ensures that hierarchical embeddings maintain coherence across varying abstraction levels, allowing for stable transitions between localized syntactic features and global semantic structures. Experimental evaluations indicate that hierarchical embeddings consistently outperform conventional token representations, improving accuracy in linguistic benchmarks while maintaining lower computational overhead. Comparative analysis across multiple domains highlights the ability of hierarchical embeddings to retain contextual consistency, particularly in specialized language applications where structured lexical alignment is essential. Statistical assessments further demonstrate that hierarchical embeddings exhibit enhanced robustness under perturbation conditions, ensuring that linguistic structures remain stable across adversarial text modifications. The integration of hierarchical projections with transformer attention mechanisms enables improved contextual adaptation, ensuring that token representations are dynamically adjusted based on varying linguistic distributions. The refined hierarchical organization of embeddings provides greater interpretability in lexical modeling, facilitating enhanced generalization capabilities across diverse text processing tasks.
- Abstract(参考訳): 構造的階層的埋め込みをトランスフォーマーベースのアーキテクチャに統合することで、語彙表現に対する洗練されたアプローチを導入し、計算効率を損なうことなく、マルチスケールの意味関係を維持できる。
トークンを構造化多様体にマッピングするプロジェクション機構は、様々な言語タスクにおける単語表現の適応性を向上し、語彙アライメントを改善する。
構造化符号化フレームワークは、階層的な埋め込みが様々な抽象レベルのコヒーレンスを維持することを保証し、局所的な構文的特徴とグローバルな意味構造の間の安定した遷移を可能にする。
実験により,階層的な埋め込みは従来のトークン表現より一貫して優れており,計算オーバーヘッドを低く抑えつつ,言語ベンチマークの精度が向上していることが示された。
複数のドメインをまたいだ比較分析は、階層的な埋め込みがコンテキスト整合性を維持する能力を強調している。
統計的評価により、階層的な埋め込みは摂動条件下で強化された堅牢性を示し、言語構造が敵対的なテキスト修正全体にわたって安定であることが示される。
階層的プロジェクションとトランスフォーマーアテンション機構の統合により、コンテクスト適応が改善され、さまざまな言語分布に基づいてトークン表現が動的に調整される。
埋め込みの洗練された階層構造は、語彙モデリングにおいてより深い解釈可能性を提供し、多様なテキスト処理タスクをまたいだ一般化機能の向上を促進する。
関連論文リスト
- Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations [75.14793516745374]
中間学習によりトランスフォーマーの構造的帰納バイアスを強化することを提案する。
実験の結果,チャンキングなどの構文的タスクのわずかな学習に有効であることが確認された。
分析の結果,中間的事前学習は,どのトークンにシナティクス変換を適用する必要があるかを追尾する注意を喚起することが明らかとなった。
論文 参考訳(メタデータ) (2024-07-05T14:29:44Z) - Inducing Systematicity in Transformers by Attending to Structurally
Quantized Embeddings [60.698130703909804]
トランスフォーマーは、複雑なデータセットでトレーニングされた後、構造と実体の新規な構成に一般化する。
本稿では,SQ-Transformerを提案する。
SQ-Transformerは,複数の低複雑さ意味解析および機械翻訳データセット上で,バニラ変換器よりも強い構成一般化を実現することを示す。
論文 参考訳(メタデータ) (2024-02-09T15:53:15Z) - Graph-Induced Syntactic-Semantic Spaces in Transformer-Based Variational
AutoEncoders [5.037881619912574]
本稿では,トランスフォーマーを用いたVAEにおける構造構文注入のための潜時空間分離法について検討する。
具体的には、グラフベースおよびシーケンシャルモデルの統合により、符号化段階で構文構造をどのように活用するかを検討する。
我々の経験的評価は、自然言語文と数学的表現に基づいて行われ、提案したエンドツーエンドのVAEアーキテクチャにより、潜在空間の全体構造がより良くなることを示している。
論文 参考訳(メタデータ) (2023-11-14T22:47:23Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - Multi-Relational Hyperbolic Word Embeddings from Natural Language
Definitions [5.763375492057694]
本稿では、そのような構造を明示的に活用し、定義から単語埋め込みを導出するマルチリレーショナルモデルを提案する。
経験的な分析は、フレームワークが望ましい構造的制約を課すのに役立つことを示している。
実験により、ユークリッド語よりもハイパーボリック語の埋め込みの方が優れていることが示された。
論文 参考訳(メタデータ) (2023-05-12T08:16:06Z) - Variational Cross-Graph Reasoning and Adaptive Structured Semantics
Learning for Compositional Temporal Grounding [143.5927158318524]
テンポラルグラウンドティング(Temporal grounding)とは、クエリ文に従って、未編集のビデオから特定のセグメントを特定するタスクである。
新たに構成時間グラウンドタスクを導入し,2つの新しいデータセット分割を構築した。
ビデオや言語に内在する構造的意味論は、構成的一般化を実現する上で重要な要素である、と我々は主張する。
論文 参考訳(メタデータ) (2023-01-22T08:02:23Z) - Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers [86.64972552583941]
我々は,グラフ対応トランスフォーマアーキテクチャにより拡張されたBERTに基づくシーケンスタグ付けモデルを提案し,コンテキストにおけるコロケーション認識の課題について評価した。
以上の結果から, モデルアーキテクチャにおける構文的依存関係を明示的に符号化することは有用であり, 英語, スペイン語, フランス語におけるコロケーションのタイプ化の差異について考察する。
論文 参考訳(メタデータ) (2022-05-23T16:47:37Z) - Transferring Semantic Knowledge Into Language Encoders [6.85316573653194]
意味的意味表現から言語エンコーダへ意味的知識を伝達する手法である意味型ミッドチューニングを導入する。
このアライメントは分類や三重項の損失によって暗黙的に学習できることを示す。
提案手法は, 推論, 理解, テキストの類似性, その他の意味的タスクにおいて, 予測性能の向上を示す言語エンコーダを生成する。
論文 参考訳(メタデータ) (2021-10-14T14:11:12Z) - Unsupervised Word Translation Pairing using Refinement based Point Set
Registration [8.568050813210823]
単語埋め込みの言語間アライメントは、言語間の知識伝達において重要な役割を果たす。
現在の教師なしのアプローチは、言語にまたがる単語埋め込み空間の幾何学的構造における類似性に依存している。
本稿では,バイリンガル単語の共有ベクトル空間への埋め込みを教師なしでマッピングするBioSpereを提案する。
論文 参考訳(メタデータ) (2020-11-26T09:51:29Z) - Unsupervised Distillation of Syntactic Information from Contextualized
Word Representations [62.230491683411536]
我々は,ニューラルネットワーク表現における意味論と構造学の非教師なしの絡み合いの課題に取り組む。
この目的のために、構造的に類似しているが意味的に異なる文群を自動的に生成する。
我々は、我々の変換クラスタベクトルが、語彙的意味論ではなく構造的特性によって空間に現れることを実証する。
論文 参考訳(メタデータ) (2020-10-11T15:13:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。