論文の概要: Hierarchical Lexical Manifold Projection in Large Language Models: A Novel Mechanism for Multi-Scale Semantic Representation
- arxiv url: http://arxiv.org/abs/2502.05395v2
- Date: Tue, 25 Mar 2025 13:16:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:50:20.331959
- Title: Hierarchical Lexical Manifold Projection in Large Language Models: A Novel Mechanism for Multi-Scale Semantic Representation
- Title(参考訳): 大規模言語モデルにおける階層的語彙的多様体射影:マルチスケール意味表現の新しいメカニズム
- Authors: Natasha Martus, Sebastian Crowther, Maxwell Dorrington, Jonathan Applethwaite, Edgar Tillinghurst, Quentin Birkenshaw, Lukas Petrov, Constance Willoughby,
- Abstract要約: 構造的階層的埋め込みをトランスフォーマーベースのアーキテクチャに統合することで、語彙表現に対する洗練されたアプローチが導入された。
トークンを構造化多様体にマッピングする射影機構は、改善された語彙アライメントを提供する。
埋め込みの洗練された階層構造は、語彙モデリングにおいてより大きな解釈可能性をもたらす。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The integration of structured hierarchical embeddings into transformer-based architectures introduces a refined approach to lexical representation, ensuring that multi-scale semantic relationships are preserved without compromising computational efficiency. A projection mechanism that maps tokens onto a structured manifold provides improved lexical alignment, enhancing the adaptability of word representations across diverse linguistic tasks. The structured encoding framework ensures that hierarchical embeddings maintain coherence across varying abstraction levels, allowing for stable transitions between localized syntactic features and global semantic structures. Experimental evaluations indicate that hierarchical embeddings consistently outperform conventional token representations, improving accuracy in linguistic benchmarks while maintaining lower computational overhead. Comparative analysis across multiple domains highlights the ability of hierarchical embeddings to retain contextual consistency, particularly in specialized language applications where structured lexical alignment is essential. Statistical assessments further demonstrate that hierarchical embeddings exhibit enhanced robustness under perturbation conditions, ensuring that linguistic structures remain stable across adversarial text modifications. The integration of hierarchical projections with transformer attention mechanisms enables improved contextual adaptation, ensuring that token representations are dynamically adjusted based on varying linguistic distributions. The refined hierarchical organization of embeddings provides greater interpretability in lexical modeling, facilitating enhanced generalization capabilities across diverse text processing tasks.
- Abstract(参考訳): 構造的階層的埋め込みをトランスフォーマーベースのアーキテクチャに統合することで、語彙表現に対する洗練されたアプローチを導入し、計算効率を損なうことなく、マルチスケールの意味関係を維持できる。
トークンを構造化多様体にマッピングするプロジェクション機構は、様々な言語タスクにおける単語表現の適応性を向上し、語彙アライメントを改善する。
構造化符号化フレームワークは、階層的な埋め込みが様々な抽象レベルのコヒーレンスを維持することを保証し、局所的な構文的特徴とグローバルな意味構造の間の安定した遷移を可能にする。
実験により,階層的な埋め込みは従来のトークン表現より一貫して優れており,計算オーバーヘッドを低く抑えつつ,言語ベンチマークの精度が向上していることが示された。
複数のドメインをまたいだ比較分析は、階層的な埋め込みがコンテキスト整合性を維持する能力を強調している。
統計的評価により、階層的な埋め込みは摂動条件下で強化された堅牢性を示し、言語構造が敵対的なテキスト修正全体にわたって安定であることが示される。
階層的プロジェクションとトランスフォーマーアテンション機構の統合により、コンテクスト適応が改善され、さまざまな言語分布に基づいてトークン表現が動的に調整される。
埋め込みの洗練された階層構造は、語彙モデリングにおいてより深い解釈可能性を提供し、多様なテキスト処理タスクをまたいだ一般化機能の向上を促進する。
関連論文リスト
- Lexical Manifold Reconfiguration in Large Language Models: A Novel Architectural Approach for Contextual Modulation [0.0]
連続的な幾何学的変換を通じてトークン埋め込みを動的に再構成するための構造化手法を開発した。
多様体をベースとした変換機構は、語彙的位置決めを規制するために統合され、埋め込みは制御されたシフトを受けることができる。
経験的評価により, 組込み再構成は難易度低減, 語彙コヒーレンスの改善, 文レベルの連続性の向上に寄与した。
論文 参考訳(メタデータ) (2025-02-12T22:11:07Z) - Hierarchical Contextual Manifold Alignment for Structuring Latent Representations in Large Language Models [7.798982346197703]
潜在トークン表現の組織化は、言語モデルの安定性、一般化、文脈整合性を決定する上で重要な役割を果たす。
コアモデル重みを変化させることなくトークン埋め込みに階層的アライメント手法を導入した。
実験により, 希少なトークン検索, 逆方向, 長距離依存性追跡の改善が示された。
論文 参考訳(メタデータ) (2025-02-06T04:01:27Z) - Latent Lexical Projection in Large Language Models: A Novel Approach to Implicit Representation Refinement [0.0]
ラテントレキシカル射影 (LLP) は、構造化された空間からラテント空間への変換を通じて、レキシカル表現を洗練するために導入された。
LLPは既存の言語モデルアーキテクチャに最適化されたプロジェクション機構を統合する。
評価は、パープレキシティの低下とBLEUスコアの上昇を示し、予測精度と流布率の改善を示唆している。
論文 参考訳(メタデータ) (2025-02-03T23:18:53Z) - Contextually Structured Token Dependency Encoding for Large Language Models [0.0]
自己注意機構は動的文脈依存を捉えるが、学習した重み分布への依存は、生成配列における長距離階層構造の保存を制限する。
依存性を意識したトークンエンコーディングでは,トークン表現内にリレーショナル制約を埋め込むという,構造化されたアプローチが導入されている。
経験的評価は、多種多様な言語ベンチマークにおけるパープレキシティの低下を示し、自己回帰テキスト生成における文脈的一貫性と予測一貫性の改善を示唆している。
論文 参考訳(メタデータ) (2025-01-30T08:51:48Z) - Neural Contextual Reinforcement Framework for Logical Structure Language Generation [1.08272575635683]
このフレームワークはカスタム報酬関数と動的コンテキストアライメント機構を統合している。
論理構造やセマンティックフローに対する人間の期待と密接に一致した出力を生成する。
さまざまなモデルサイズにわたるノイズの多い入力データとスケーラビリティを扱う上で、堅牢性を示す。
論文 参考訳(メタデータ) (2025-01-20T11:34:28Z) - Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations [75.14793516745374]
中間学習によりトランスフォーマーの構造的帰納バイアスを強化することを提案する。
実験の結果,チャンキングなどの構文的タスクのわずかな学習に有効であることが確認された。
分析の結果,中間的事前学習は,どのトークンにシナティクス変換を適用する必要があるかを追尾する注意を喚起することが明らかとなった。
論文 参考訳(メタデータ) (2024-07-05T14:29:44Z) - Inducing Systematicity in Transformers by Attending to Structurally
Quantized Embeddings [60.698130703909804]
トランスフォーマーは、複雑なデータセットでトレーニングされた後、構造と実体の新規な構成に一般化する。
本稿では,SQ-Transformerを提案する。
SQ-Transformerは,複数の低複雑さ意味解析および機械翻訳データセット上で,バニラ変換器よりも強い構成一般化を実現することを示す。
論文 参考訳(メタデータ) (2024-02-09T15:53:15Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - Variational Cross-Graph Reasoning and Adaptive Structured Semantics
Learning for Compositional Temporal Grounding [143.5927158318524]
テンポラルグラウンドティング(Temporal grounding)とは、クエリ文に従って、未編集のビデオから特定のセグメントを特定するタスクである。
新たに構成時間グラウンドタスクを導入し,2つの新しいデータセット分割を構築した。
ビデオや言語に内在する構造的意味論は、構成的一般化を実現する上で重要な要素である、と我々は主張する。
論文 参考訳(メタデータ) (2023-01-22T08:02:23Z) - Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers [86.64972552583941]
我々は,グラフ対応トランスフォーマアーキテクチャにより拡張されたBERTに基づくシーケンスタグ付けモデルを提案し,コンテキストにおけるコロケーション認識の課題について評価した。
以上の結果から, モデルアーキテクチャにおける構文的依存関係を明示的に符号化することは有用であり, 英語, スペイン語, フランス語におけるコロケーションのタイプ化の差異について考察する。
論文 参考訳(メタデータ) (2022-05-23T16:47:37Z) - Unsupervised Distillation of Syntactic Information from Contextualized
Word Representations [62.230491683411536]
我々は,ニューラルネットワーク表現における意味論と構造学の非教師なしの絡み合いの課題に取り組む。
この目的のために、構造的に類似しているが意味的に異なる文群を自動的に生成する。
我々は、我々の変換クラスタベクトルが、語彙的意味論ではなく構造的特性によって空間に現れることを実証する。
論文 参考訳(メタデータ) (2020-10-11T15:13:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。