Sample-Efficient Reinforcement Learning from Human Feedback via Information-Directed Sampling
- URL: http://arxiv.org/abs/2502.05434v2
- Date: Wed, 12 Feb 2025 07:46:40 GMT
- Title: Sample-Efficient Reinforcement Learning from Human Feedback via Information-Directed Sampling
- Authors: Han Qi, Haochen Yang, Qiaosheng Zhang, Zhuoran Yang,
- Abstract summary: We study the problem of reinforcement learning from human feedback (RLHF), a critical problem in training large language models.
Our main contribution is the design of novel sample-efficient RLHF algorithms based on information-directed sampling (IDS)
Our work showcases the value of information theory in reinforcement learning and in the training of large language models.
- Score: 46.035795210898414
- License:
- Abstract: We study the problem of reinforcement learning from human feedback (RLHF), a critical problem in training large language models, from a theoretical perspective. Our main contribution is the design of novel sample-efficient RLHF algorithms based on information-directed sampling (IDS), an online decision-making principle inspired by information theory. Our algorithms maximize the sum of the value function and a mutual information term that encourages exploration of the unknown environment (which quantifies the information gained about the environment through observed human feedback data). To tackle the challenge of large state spaces and improve sample efficiency, we construct a simplified \emph{surrogate environment} and introduce a novel distance measure (named the \emph{$\ell_g$-distance}), enabling our IDS-based algorithm to achieve a Bayesian regret upper bound of order $O(H^{\frac{3}{2}}\sqrt{\log(K(\epsilon)) T})$, where $H$ is the episode length, $T$ is the number of episode and $K(\epsilon)$ is related to the covering number of the environment. Specializing to the tabular settings, this regret bound is of order $\tilde{O}(H^2\sqrt{SAT})$, where $S$ and $A$ are the numbers of states and actions. Finally, we propose an Approximate-IDS algorithm that is computationally more efficient while maintaining nearly the same sample efficiency. The design principle of this approximate algorithm is not only effective in RLHF settings but also applicable to the standard RL framework. Moreover, our work showcases the value of information theory in reinforcement learning and in the training of large language models.
Related papers
- Settling the Sample Complexity of Online Reinforcement Learning [92.02082223856479]
We show how to achieve minimax-optimal regret without incurring any burn-in cost.
We extend our theory to unveil the influences of problem-dependent quantities like the optimal value/cost and certain variances.
arXiv Detail & Related papers (2023-07-25T15:42:11Z) - Provably Efficient Neural Offline Reinforcement Learning via Perturbed
Rewards [33.88533898709351]
VIPeR amalgamates the randomized value function idea with the pessimism principle.
It implicitly obtains pessimism by simply perturbing the offline data multiple times.
It is both provably and computationally efficient in general Markov decision processes (MDPs) with neural network function approximation.
arXiv Detail & Related papers (2023-02-24T17:52:12Z) - Human-in-the-loop: Provably Efficient Preference-based Reinforcement
Learning with General Function Approximation [107.54516740713969]
We study human-in-the-loop reinforcement learning (RL) with trajectory preferences.
Instead of receiving a numeric reward at each step, the agent only receives preferences over trajectory pairs from a human overseer.
We propose the first optimistic model-based algorithm for PbRL with general function approximation.
arXiv Detail & Related papers (2022-05-23T09:03:24Z) - An Experimental Design Perspective on Model-Based Reinforcement Learning [73.37942845983417]
In practical applications of RL, it is expensive to observe state transitions from the environment.
We propose an acquisition function that quantifies how much information a state-action pair would provide about the optimal solution to a Markov decision process.
arXiv Detail & Related papers (2021-12-09T23:13:57Z) - On Reward-Free RL with Kernel and Neural Function Approximations:
Single-Agent MDP and Markov Game [140.19656665344917]
We study the reward-free RL problem, where an agent aims to thoroughly explore the environment without any pre-specified reward function.
We tackle this problem under the context of function approximation, leveraging powerful function approximators.
We establish the first provably efficient reward-free RL algorithm with kernel and neural function approximators.
arXiv Detail & Related papers (2021-10-19T07:26:33Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
A novel model-free algorithm is proposed to minimize regret in episodic reinforcement learning.
The proposed algorithm employs an em early-settled reference update rule, with the aid of two Q-learning sequences.
The design principle of our early-settled variance reduction method might be of independent interest to other RL settings.
arXiv Detail & Related papers (2021-10-09T21:13:48Z) - Towards Deep Learning Models Resistant to Large Perturbations [0.0]
Adversarial robustness has proven to be a required property of machine learning algorithms.
We show that the well-established algorithm called "adversarial training" fails to train a deep neural network given a large, but reasonable, perturbation magnitude.
arXiv Detail & Related papers (2020-03-30T12:03:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.