論文の概要: Event Stream-based Visual Object Tracking: HDETrack V2 and A High-Definition Benchmark
- arxiv url: http://arxiv.org/abs/2502.05574v1
- Date: Sat, 08 Feb 2025 13:59:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:34:50.321764
- Title: Event Stream-based Visual Object Tracking: HDETrack V2 and A High-Definition Benchmark
- Title(参考訳): イベントストリームベースのビジュアルオブジェクト追跡: HDETrack V2と高精細ベンチマーク
- Authors: Shiao Wang, Xiao Wang, Chao Wang, Liye Jin, Lin Zhu, Bo Jiang, Yonghong Tian, Jin Tang,
- Abstract要約: 本稿では,学生トランスフォーマーネットワークの学習を支援するために,新しい階層的知識蒸留戦略を導入する。
新たに提案したテストタイムチューニング戦略により,テスト対象オブジェクトに対してネットワークモデルを適用する。
大規模なイベントベースのトラッキングデータセットであるEventVOTを提案する。
- 参考スコア(独自算出の注目度): 36.9654606035663
- License:
- Abstract: We then introduce a novel hierarchical knowledge distillation strategy that incorporates the similarity matrix, feature representation, and response map-based distillation to guide the learning of the student Transformer network. We also enhance the model's ability to capture temporal dependencies by applying the temporal Fourier transform to establish temporal relationships between video frames. We adapt the network model to specific target objects during testing via a newly proposed test-time tuning strategy to achieve high performance and flexibility in target tracking. Recognizing the limitations of existing event-based tracking datasets, which are predominantly low-resolution, we propose EventVOT, the first large-scale high-resolution event-based tracking dataset. It comprises 1141 videos spanning diverse categories such as pedestrians, vehicles, UAVs, ping pong, etc. Extensive experiments on both low-resolution (FE240hz, VisEvent, FELT), and our newly proposed high-resolution EventVOT dataset fully validated the effectiveness of our proposed method. Both the benchmark dataset and source code have been released on https://github.com/Event-AHU/EventVOT_Benchmark
- Abstract(参考訳): 次に, 類似度行列, 特徴表現, 応答マップに基づく蒸留を取り入れた新しい階層的知識蒸留手法を導入し, 学生トランスフォーマーネットワークの学習を指導する。
また、ビデオフレーム間の時間的関係を確立するために、時間的フーリエ変換を適用することで、時間的依存関係を捕捉するモデルの能力を高める。
ネットワークモデルをテスト対象オブジェクトに適用し、新しいテスト時間チューニング戦略により、ターゲットトラッキングにおける高い性能と柔軟性を実現する。
主に低解像度な既存のイベントベースのトラッキングデータセットの制限を認識し、最初の大規模イベントベースのトラッキングデータセットであるEventVOTを提案する。
歩行者、車両、UAV、ピンポンなど多様なカテゴリーにまたがる1141の動画で構成されている。
低分解能(FE240hz, VisEvent, FELT)と新たに提案した高分解能EventVOTデータセットの両実験により,提案手法の有効性が検証された。
ベンチマークデータセットとソースコードは、https://github.com/Event-AHU/EventVOT_Benchmarkでリリースされた。
関連論文リスト
- SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOTはイベントベースのマルチオブジェクトトラッカーである。
SpikeMOTはスパイクニューラルネットワークを使用して、オブジェクトに関連するイベントストリームからスパーステンポラルな特徴を抽出する。
論文 参考訳(メタデータ) (2023-09-29T05:13:43Z) - Event Stream-based Visual Object Tracking: A High-Resolution Benchmark
Dataset and A Novel Baseline [38.42400442371156]
既存の作業は、整列したRGBとイベントデータを使用して正確なトラッキングを行うか、イベントベースのトラッカーを直接学習する。
本稿では,知識伝達を促進するために,学習中に多モード/多ビュー情報を十分に活用できる新しい階層型知識蒸留フレームワークを提案する。
EventVOTという,最初の大規模高解像度(1280×720$)のデータセットを提案する。1141のビデオが収録されており,歩行者や自動車,UAV,ピンポンなど,幅広いカテゴリをカバーする。
論文 参考訳(メタデータ) (2023-09-26T01:42:26Z) - TAPIR: Tracking Any Point with per-frame Initialization and temporal
Refinement [64.11385310305612]
本稿では,ビデオシーケンスを通して任意の物理面上の問合せ点を効果的に追跡する,TAP(Tracking Any Point)の新しいモデルを提案する。
提案手法では,(1)他のフレームの問合せ点に対する適切な候補点マッチングを独立に特定するマッチング段階と,(2)局所的相関に基づいてトラジェクトリと問合せの両方を更新する改良段階の2段階を用いる。
結果として得られたモデルは、DAVISにおける平均約20%の絶対平均ジャカード(AJ)改善によって示されるように、TAP-Vidベンチマークにおける大きなマージンで、すべてのベースライン手法を上回ります。
論文 参考訳(メタデータ) (2023-06-14T17:07:51Z) - Event Voxel Set Transformer for Spatiotemporal Representation Learning on Event Streams [19.957857885844838]
イベントカメラは、シーンをスパースで非同期なイベントストリームとして記録するニューロモルフィックな視覚センサである。
本稿では,イベントストリーム上での効率的な表現学習のためのイベントVoxel Set Transformer (EVSTr) という注目度モデルを提案する。
実験によると、EVSTrは低モデルの複雑さを維持しながら最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-03-07T12:48:02Z) - Revisiting Color-Event based Tracking: A Unified Network, Dataset, and
Metric [53.88188265943762]
上記の機能を同時に実現したCEUTrack(Color-Event Unified Tracking)のためのシングルステージバックボーンネットワークを提案する。
提案するCEUTrackはシンプルで,効率的で,75FPS以上を達成し,新たなSOTA性能を実現している。
論文 参考訳(メタデータ) (2022-11-20T16:01:31Z) - Weakly Supervised Video Salient Object Detection [79.51227350937721]
本稿では,relabeled relabeled "fixation guided scribble annotations" に基づく最初の弱教師付きビデオサリエント物体検出モデルを提案する。
効果的なマルチモーダル学習と長期時間文脈モデリングを実現するために,「アプレンス・モーション・フュージョン・モジュール」と双方向のConvLSTMベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-06T09:48:38Z) - TDIOT: Target-driven Inference for Deep Video Object Tracking [0.2457872341625575]
本研究では,事前訓練したMask R-CNNディープオブジェクト検出器をベースラインとして採用する。
本研究では,Mask R-CNNのFPN-ResNet101バックボーン上に新しい推論アーキテクチャを導入し,検出と追跡を共同で行う。
提案する単一オブジェクトトラッカであるtdiotは、データアソシエーションに外観類似性に基づく時間マッチングを適用する。
論文 参考訳(メタデータ) (2021-03-19T20:45:06Z) - Fast Video Object Segmentation With Temporal Aggregation Network and
Dynamic Template Matching [67.02962970820505]
ビデオオブジェクト(VOS)に「トラッキング・バイ・検出」を導入する。
本稿では,時間的アグリゲーションネットワークと動的時間進化テンプレートマッチング機構を提案する。
我々は,DAVISベンチマークで1フレームあたり0.14秒,J&Fで75.9%の速度で,複雑なベルとホイッスルを伴わずに,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2020-07-11T05:44:16Z) - Asynchronous Tracking-by-Detection on Adaptive Time Surfaces for
Event-based Object Tracking [87.0297771292994]
本稿では,イベントベースのトラッキング・バイ・ディテクト(ETD)手法を提案する。
この目的を達成するために,線形時間決定(ATSLTD)イベント・ツー・フレーム変換アルゴリズムを用いた適応時間曲面を提案する。
提案手法と,従来のカメラやイベントカメラをベースとした7種類のオブジェクト追跡手法と,ETDの2種類のバリエーションを比較した。
論文 参考訳(メタデータ) (2020-02-13T15:58:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。