Semantic Data Augmentation Enhanced Invariant Risk Minimization for Medical Image Domain Generalization
- URL: http://arxiv.org/abs/2502.05593v1
- Date: Sat, 08 Feb 2025 14:40:05 GMT
- Title: Semantic Data Augmentation Enhanced Invariant Risk Minimization for Medical Image Domain Generalization
- Authors: Yaoyao Zhu, Xiuding Cai, Yingkai Wang, Yu Yao, Xu Luo, Zhongliang Fu,
- Abstract summary: We propose a novel domain-oriented direction selector to replace the random augmentation strategy used in VIRM.
Our method effectively reduces domain discrepancies and enhances generalization performance.
Experiments on a multi-center diabetic retinopathy dataset demonstrate that our method outperforms state-of-the-art approaches.
- Score: 10.734946662809413
- License:
- Abstract: Deep learning has achieved remarkable success in medical image classification. However, its clinical application is often hindered by data heterogeneity caused by variations in scanner vendors, imaging protocols, and operators. Approaches such as invariant risk minimization (IRM) aim to address this challenge of out-of-distribution generalization. For instance, VIRM improves upon IRM by tackling the issue of insufficient feature support overlap, demonstrating promising potential. Nonetheless, these methods face limitations in medical imaging due to the scarcity of annotated data and the inefficiency of augmentation strategies. To address these issues, we propose a novel domain-oriented direction selector to replace the random augmentation strategy used in VIRM. Our method leverages inter-domain covariance as a guider for augmentation direction, guiding data augmentation towards the target domain. This approach effectively reduces domain discrepancies and enhances generalization performance. Experiments on a multi-center diabetic retinopathy dataset demonstrate that our method outperforms state-of-the-art approaches, particularly under limited data conditions and significant domain heterogeneity.
Related papers
- Divergent Domains, Convergent Grading: Enhancing Generalization in Diabetic Retinopathy Grading [8.59772105902647]
Diabetic Retinopathy (DR) constitutes 5% of global blindness cases.
We introduce a novel deep learning method for achieving domain generalization (DG) in DR grading.
Our method demonstrates significant improvements over the strong Empirical Risk Minimization baseline.
arXiv Detail & Related papers (2024-11-04T21:09:24Z) - GS-EMA: Integrating Gradient Surgery Exponential Moving Average with
Boundary-Aware Contrastive Learning for Enhanced Domain Generalization in
Aneurysm Segmentation [41.97669338211682]
We propose a novel domain generalization strategy that employs gradient surgery exponential moving average (GS-EMA) optimization technique and boundary-aware contrastive learning (BACL)
Our approach is distinct in its ability to adapt to new, unseen domains by learning domain-invariant features, thereby improving the robustness and accuracy of aneurysm segmentation across diverse clinical datasets.
arXiv Detail & Related papers (2024-02-23T10:02:15Z) - Data Augmentation-Based Unsupervised Domain Adaptation In Medical
Imaging [0.709016563801433]
We propose an unsupervised method for robust domain adaptation in brain MRI segmentation by leveraging MRI-specific augmentation techniques.
The results show that our proposed approach achieves high accuracy, exhibits broad applicability, and showcases remarkable robustness against domain shift in various tasks.
arXiv Detail & Related papers (2023-08-08T17:00:11Z) - A Novel Cross-Perturbation for Single Domain Generalization [54.612933105967606]
Single domain generalization aims to enhance the ability of the model to generalize to unknown domains when trained on a single source domain.
The limited diversity in the training data hampers the learning of domain-invariant features, resulting in compromised generalization performance.
We propose CPerb, a simple yet effective cross-perturbation method to enhance the diversity of the training data.
arXiv Detail & Related papers (2023-08-02T03:16:12Z) - Taxonomy Adaptive Cross-Domain Adaptation in Medical Imaging via
Optimization Trajectory Distillation [73.83178465971552]
The success of automated medical image analysis depends on large-scale and expert-annotated training sets.
Unsupervised domain adaptation (UDA) has been raised as a promising approach to alleviate the burden of labeled data collection.
We propose optimization trajectory distillation, a unified approach to address the two technical challenges from a new perspective.
arXiv Detail & Related papers (2023-07-27T08:58:05Z) - Source-free Domain Adaptation Requires Penalized Diversity [60.04618512479438]
Source-free domain adaptation (SFDA) was introduced to address knowledge transfer between different domains in the absence of source data.
In unsupervised SFDA, the diversity is limited to learning a single hypothesis on the source or learning multiple hypotheses with a shared feature extractor.
We propose a novel unsupervised SFDA algorithm that promotes representational diversity through the use of separate feature extractors.
arXiv Detail & Related papers (2023-04-06T00:20:19Z) - Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
In real-world scenarios, it is common for models to encounter data from new and different domains to which they were not exposed to during training.
domain generalization (DG) is a promising direction as it enables models to handle data from previously unseen domains.
We introduce a novel DG method called Adversarial Intensity Attack (AdverIN), which leverages adversarial training to generate training data with an infinite number of styles.
arXiv Detail & Related papers (2023-04-05T19:40:51Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA) can effectively address domain gap issues in real-world image Super-Resolution (SR)
We propose a SOurce-free Domain Adaptation framework for image SR (SODA-SR) to address this issue, i.e., adapt a source-trained model to a target domain with only unlabeled target data.
arXiv Detail & Related papers (2023-03-31T03:14:44Z) - MSCDA: Multi-level Semantic-guided Contrast Improves Unsupervised Domain
Adaptation for Breast MRI Segmentation in Small Datasets [5.272836235045653]
We propose a novel Multi-level Semantic-guided Contrastive Domain Adaptation framework.
Our approach incorporates self-training with contrastive learning to align feature representations between domains.
In particular, we extend the contrastive loss by incorporating pixel-to-pixel, pixel-to-centroid, and centroid-to-centroid contrasts.
arXiv Detail & Related papers (2023-01-04T19:16:55Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.