Divergent Domains, Convergent Grading: Enhancing Generalization in Diabetic Retinopathy Grading
- URL: http://arxiv.org/abs/2411.02614v1
- Date: Mon, 04 Nov 2024 21:09:24 GMT
- Title: Divergent Domains, Convergent Grading: Enhancing Generalization in Diabetic Retinopathy Grading
- Authors: Sharon Chokuwa, Muhammad Haris Khan,
- Abstract summary: Diabetic Retinopathy (DR) constitutes 5% of global blindness cases.
We introduce a novel deep learning method for achieving domain generalization (DG) in DR grading.
Our method demonstrates significant improvements over the strong Empirical Risk Minimization baseline.
- Score: 8.59772105902647
- License:
- Abstract: Diabetic Retinopathy (DR) constitutes 5% of global blindness cases. While numerous deep learning approaches have sought to enhance traditional DR grading methods, they often falter when confronted with new out-of-distribution data thereby impeding their widespread application. In this study, we introduce a novel deep learning method for achieving domain generalization (DG) in DR grading and make the following contributions. First, we propose a new way of generating image-to-image diagnostically relevant fundus augmentations conditioned on the grade of the original fundus image. These augmentations are tailored to emulate the types of shifts in DR datasets thus increase the model's robustness. Second, we address the limitations of the standard classification loss in DG for DR fundus datasets by proposing a new DG-specific loss, domain alignment loss; which ensures that the feature vectors from all domains corresponding to the same class converge onto the same manifold for better domain generalization. Third, we tackle the coupled problem of data imbalance across DR domains and classes by proposing to employ Focal loss which seamlessly integrates with our new alignment loss. Fourth, due to inevitable observer variability in DR diagnosis that induces label noise, we propose leveraging self-supervised pretraining. This approach ensures that our DG model remains robust against early susceptibility to label noise, even when only a limited dataset of non-DR fundus images is available for pretraining. Our method demonstrates significant improvements over the strong Empirical Risk Minimization baseline and other recently proposed state-of-the-art DG methods for DR grading. Code is available at https://github.com/sharonchokuwa/dg-adr.
Related papers
- DRStageNet: Deep Learning for Diabetic Retinopathy Staging from Fundus
Images [3.4456298317539313]
Timely identification is critical to curb vision impairment.
Models often fail to generalize due to distribution shifts between the source domain on which the model was trained and the target domain where it is deployed.
We introduce DRStageNet, a deep learning model designed to mitigate this challenge.
arXiv Detail & Related papers (2023-12-22T18:09:20Z) - Generalizing to Unseen Domains in Diabetic Retinopathy Classification [8.59772105902647]
We study the problem of generalizing a model to unseen distributions or domains in diabetic retinopathy classification.
We propose a simple and effective domain generalization (DG) approach that achieves self-distillation in vision transformers.
We report the performance of several state-of-the-art DG methods on open-source DR classification datasets.
arXiv Detail & Related papers (2023-10-26T09:11:55Z) - CauDR: A Causality-inspired Domain Generalization Framework for
Fundus-based Diabetic Retinopathy Grading [11.982719279583002]
A computer-aided DR grading system has a significant impact on helping ophthalmologists with rapid screening and diagnosis.
Recent advances in fundus photography have precipitated the development of novel retinal imaging cameras.
Most deep learning-based algorithms for DR grading demonstrate limited generalization across domains.
arXiv Detail & Related papers (2023-09-27T08:43:49Z) - DGM-DR: Domain Generalization with Mutual Information Regularized
Diabetic Retinopathy Classification [40.35834579068518]
Domain shift between training and testing data presents a significant challenge for training general deep learning models.
We introduce a DG method that re-establishes the model objective function as a pretrained model to the medical imaging field.
Our proposed method consistently outperforms the previous state-of-the-art by a margin of 5.25% in average accuracy and a lower standard deviation.
arXiv Detail & Related papers (2023-09-18T11:17:13Z) - Exploring the Transfer Learning Capabilities of CLIP in Domain
Generalization for Diabetic Retinopathy [7.649900082537232]
Cross-domain generalization is a challenging problem in the medical domain.
Recent studies have shown the effectiveness of using CLIP to handle the DG problem in natural images.
In this study, we investigate CLIP's transfer learning capabilities and its potential for cross-domain generalization in diabetic retinopathy (DR) classification.
arXiv Detail & Related papers (2023-08-27T22:02:41Z) - Measuring the Robustness of NLP Models to Domain Shifts [50.89876374569385]
Existing research on Domain Robustness (DR) suffers from disparate setups, limited task variety, and scarce research on recent capabilities such as in-context learning.
Current research focuses on challenge sets and relies solely on the Source Drop (SD): Using the source in-domain performance as a reference point for degradation.
We argue that the Target Drop (TD), which measures degradation from the target in-domain performance, should be used as a complementary point of view.
arXiv Detail & Related papers (2023-05-31T20:25:08Z) - How to Train Your DRAGON: Diverse Augmentation Towards Generalizable
Dense Retrieval [80.54532535622988]
We show that a generalizable dense retriever can be trained to achieve high accuracy in both supervised and zero-shot retrieval.
DRAGON, our dense retriever trained with diverse augmentation, is the first BERT-base-sized DR to achieve state-of-the-art effectiveness in both supervised and zero-shot evaluations.
arXiv Detail & Related papers (2023-02-15T03:53:26Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Self-Supervised Domain Adaptation for Diabetic Retinopathy Grading using
Vessel Image Reconstruction [61.58601145792065]
We learn invariant target-domain features by defining a novel self-supervised task based on retinal vessel image reconstructions.
It can be shown that our approach outperforms existing domain strategies.
arXiv Detail & Related papers (2021-07-20T09:44:07Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Simple and Effective Prevention of Mode Collapse in Deep One-Class
Classification [93.2334223970488]
We propose two regularizers to prevent hypersphere collapse in deep SVDD.
The first regularizer is based on injecting random noise via the standard cross-entropy loss.
The second regularizer penalizes the minibatch variance when it becomes too small.
arXiv Detail & Related papers (2020-01-24T03:44:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.