論文の概要: MicroViT: A Vision Transformer with Low Complexity Self Attention for Edge Device
- arxiv url: http://arxiv.org/abs/2502.05800v1
- Date: Sun, 09 Feb 2025 08:04:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:32:04.777424
- Title: MicroViT: A Vision Transformer with Low Complexity Self Attention for Edge Device
- Title(参考訳): MicroViT:エッジデバイスのための低複雑性自己注意型視覚変換器
- Authors: Novendra Setyawan, Chi-Chia Sun, Mao-Hsiu Hsu, Wen-Kai Kuo, Jun-Wei Hsieh,
- Abstract要約: Vision Transformer (ViT) は、様々なコンピュータビジョンタスクにおいて最先端のパフォーマンスを実証しているが、その高い計算要求により、限られたリソースを持つエッジデバイスでは実用的ではない。
本稿では,エッジデバイスに最適化された軽量ビジョントランスフォーマーアーキテクチャであるMicroViTを提案する。
- 参考スコア(独自算出の注目度): 3.617580194719686
- License:
- Abstract: The Vision Transformer (ViT) has demonstrated state-of-the-art performance in various computer vision tasks, but its high computational demands make it impractical for edge devices with limited resources. This paper presents MicroViT, a lightweight Vision Transformer architecture optimized for edge devices by significantly reducing computational complexity while maintaining high accuracy. The core of MicroViT is the Efficient Single Head Attention (ESHA) mechanism, which utilizes group convolution to reduce feature redundancy and processes only a fraction of the channels, thus lowering the burden of the self-attention mechanism. MicroViT is designed using a multi-stage MetaFormer architecture, stacking multiple MicroViT encoders to enhance efficiency and performance. Comprehensive experiments on the ImageNet-1K and COCO datasets demonstrate that MicroViT achieves competitive accuracy while significantly improving 3.6 faster inference speed and reducing energy consumption with 40% higher efficiency than the MobileViT series, making it suitable for deployment in resource-constrained environments such as mobile and edge devices.
- Abstract(参考訳): Vision Transformer (ViT) は様々なコンピュータビジョンタスクで最先端の性能を実証しているが、その高い計算要求により限られたリソースを持つエッジデバイスでは実用的ではない。
本稿では,エッジデバイスに最適化された軽量ビジョントランスフォーマーアーキテクチャであるMicroViTを提案する。
MicroViTのコアは、グループ畳み込みを利用した効率的なシングルヘッドアテンション(ESHA)機構である。
MicroViTはマルチステージのMetaFormerアーキテクチャを使って設計されており、複数のMicroViTエンコーダを積み重ねて効率と性能を向上させる。
ImageNet-1KとCOCOデータセットの総合的な実験により、MicroViTは3.6倍の推論速度を向上し、MobileViTシリーズよりも40%高い効率でエネルギー消費を削減し、モバイルやエッジデバイスのような資源に制約のある環境に展開するのに適していることが示された。
関連論文リスト
- CHOSEN: Compilation to Hardware Optimization Stack for Efficient Vision Transformer Inference [4.523939613157408]
ビジョントランスフォーマー(ViT)は、コンピュータビジョンへの機械学習アプローチにおける画期的なシフトである。
本稿では,これらの課題に対処するソフトウェアハードウェアの共同設計フレームワークであるCHOSENを紹介し,FPGA上にViTをデプロイするための自動フレームワークを提供する。
ChoSENはDeiT-SとDeiT-Bモデルのスループットを1.5倍と1.42倍改善した。
論文 参考訳(メタデータ) (2024-07-17T16:56:06Z) - DeViT: Decomposing Vision Transformers for Collaborative Inference in
Edge Devices [42.89175608336226]
ビジョントランス (ViT) は、複数のコンピュータビジョンベンチマークで最先端のパフォーマンスを達成した。
ViTモデルは膨大なパラメータと高い計算コストに悩まされ、リソース制約されたエッジデバイスへのデプロイが困難になる。
本稿では,大規模なViTを分解してエッジ展開を容易にするために,DeViTと呼ばれる協調推論フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-10T12:26:17Z) - Edge-MoE: Memory-Efficient Multi-Task Vision Transformer Architecture
with Task-level Sparsity via Mixture-of-Experts [60.1586169973792]
M$3$ViTは、Mix-of-experts (MoE)を導入した最新のマルチタスクViTモデルである。
MoEは精度の向上と80%以上の削減計算を実現しているが、FPGAに効率的なデプロイを行う上での課題は残されている。
Edge-MoEと呼ばれる私たちの研究は、アーキテクチャの革新の集合を伴って、マルチタスクのViTのための最初のエンドツーエンドFPGAアクセラレータを導入するという課題を解決します。
論文 参考訳(メタデータ) (2023-05-30T02:24:03Z) - Fast GraspNeXt: A Fast Self-Attention Neural Network Architecture for
Multi-task Learning in Computer Vision Tasks for Robotic Grasping on the Edge [80.88063189896718]
アーキテクチャと計算の複雑さが高いと、組み込みデバイスへのデプロイに適さない。
Fast GraspNeXtは、ロボットグルーピングのためのコンピュータビジョンタスクに埋め込まれたマルチタスク学習に適した、高速な自己認識型ニューラルネットワークアーキテクチャである。
論文 参考訳(メタデータ) (2023-04-21T18:07:14Z) - Rethinking Vision Transformers for MobileNet Size and Speed [58.01406896628446]
本稿では,低レイテンシでパラメータ効率の高い新しいスーパーネットを提案する。
また,変圧器モデルに対して,よりきめ細かな共同探索戦略を導入する。
この研究は、MobileNetレベルのサイズと速度であっても、適切に設計され、最適化されたビジョントランスフォーマーがハイパフォーマンスを実現することを実証している。
論文 参考訳(メタデータ) (2022-12-15T18:59:12Z) - ViTALiTy: Unifying Low-rank and Sparse Approximation for Vision
Transformer Acceleration with a Linear Taylor Attention [23.874485033096917]
Vision Transformer (ViT)は、様々なコンピュータビジョンアプリケーションのための畳み込みニューラルネットワークの競合代替として登場した。
そこで本研究では,VitaliTy という,VT の推論効率向上のためのハードウェア設計フレームワークを提案する。
ViTALiTyは、ViTにおける注目の低ランクとスパースの両方のコンポーネントを統合する。
論文 参考訳(メタデータ) (2022-11-09T18:58:21Z) - EdgeViTs: Competing Light-weight CNNs on Mobile Devices with Vision
Transformers [88.52500757894119]
自己注意に基づく視覚変換器(ViT)は、コンピュータビジョンにおける畳み込みニューラルネットワーク(CNN)に代わる、非常に競争力のあるアーキテクチャとして登場した。
われわれはEdgeViTsを紹介した。これは新しい軽量ViTのファミリーで、注目に基づく視覚モデルが初めて、最高の軽量CNNと競合することを可能にする。
論文 参考訳(メタデータ) (2022-05-06T18:17:19Z) - Coarse-to-Fine Vision Transformer [83.45020063642235]
性能を維持しながら計算負担を軽減するための粗視変換器(CF-ViT)を提案する。
提案するCF-ViTは,近代的なViTモデルにおける2つの重要な観測によって動機付けられている。
CF-ViTはLV-ViTのFLOPを53%削減し,スループットも2.01倍に向上した。
論文 参考訳(メタデータ) (2022-03-08T02:57:49Z) - AdaViT: Adaptive Tokens for Efficient Vision Transformer [91.88404546243113]
本稿では,視覚変換器(ViT)の推論コストを,複雑さの異なる画像に対して適応的に調整する手法であるAdaViTを紹介する。
AdaViTは、推論が進むにつれてネットワーク内で処理されるビジョントランスフォーマーのトークン数を自動で削減することで、これを実現する。
論文 参考訳(メタデータ) (2021-12-14T18:56:07Z) - HRViT: Multi-Scale High-Resolution Vision Transformer [19.751569057142806]
視覚変換器(ViT)は、コンピュータビジョンタスクにおける優れた性能のために多くの注目を集めている。
本稿では,高分解能マルチブランチアーキテクチャと視覚変換器を効率よく統合したHRViTを提案する。
提案されたHRViTはADE20Kで50.20% mIoU、Cityscapesで83.16% mIoUを達成した。
論文 参考訳(メタデータ) (2021-11-01T19:49:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。