論文の概要: Devil is in the Details: Density Guidance for Detail-Aware Generation with Flow Models
- arxiv url: http://arxiv.org/abs/2502.05807v1
- Date: Sun, 09 Feb 2025 08:18:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:30:43.203517
- Title: Devil is in the Details: Density Guidance for Detail-Aware Generation with Flow Models
- Title(参考訳): Devil is in the details: Density Guidance for Detail-Aware Generation with Flow Models
- Authors: Rafał Karczewski, Markus Heinonen, Vikas Garg,
- Abstract要約: 高濃度の試料は滑らかであるが、低濃度の試料はより詳細なものである。
したがって、サンプル密度の制御は現実性と詳細性のバランスをとる上で重要である。
本実験は, 試料の品質を損なうことなく, 画像の細粒度を制御できることを実証した。
- 参考スコア(独自算出の注目度): 12.875154616215305
- License:
- Abstract: Diffusion models have emerged as a powerful class of generative models, capable of producing high-quality images by mapping noise to a data distribution. However, recent findings suggest that image likelihood does not align with perceptual quality: high-likelihood samples tend to be smooth, while lower-likelihood ones are more detailed. Controlling sample density is thus crucial for balancing realism and detail. In this paper, we analyze an existing technique, Prior Guidance, which scales the latent code to influence image detail. We introduce score alignment, a condition that explains why this method works and show that it can be tractably checked for any continuous normalizing flow model. We then propose Density Guidance, a principled modification of the generative ODE that enables exact log-density control during sampling. Finally, we extend Density Guidance to stochastic sampling, ensuring precise log-density control while allowing controlled variation in structure or fine details. Our experiments demonstrate that these techniques provide fine-grained control over image detail without compromising sample quality.
- Abstract(参考訳): 拡散モデルは、ノイズをデータ分布にマッピングすることで高品質な画像を生成することができる強力な生成モデルのクラスとして登場した。
しかし、近年の研究では、画像の可能性は知覚的品質と一致していないことが示唆されている: ハイライクライクライクライクライクライクライクなサンプルはスムーズな傾向にあるが、ローライクライクライクライクライクなサンプルはより詳細である。
したがって、サンプル密度の制御は現実性と詳細性のバランスをとる上で重要である。
本稿では,画像の細部に影響を与えるために遅延符号をスケールする既存の手法であるPresideed Guidanceを分析する。
この手法がなぜ機能するのかを説明する条件であるスコアアライメントを導入し、連続正規化フローモデルに対してトラクタブルにチェック可能であることを示す。
次に、サンプリング中の正確な対数密度制御を可能にする、ジェネレーティブODEの原理的な修正である密度誘導を提案する。
最後に,密度誘導を確率的サンプリングに拡張し,高精度なログ密度制御を実現し,構造や詳細の制御を可能とした。
本実験は, 試料の品質を損なうことなく, 画像の細粒度を制御できることを実証した。
関連論文リスト
- Can Your Generative Model Detect Out-of-Distribution Covariate Shift? [2.0144831048903566]
条件付き正規化フロー(cNFs)を用いたOODセンサデータ検出のための新しい手法を提案する。
CIFAR10 対 CIFAR10-C と ImageNet200 対 ImageNet200-C では,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-09-04T19:27:56Z) - How to Trace Latent Generative Model Generated Images without Artificial Watermark? [88.04880564539836]
潜在生成モデルによって生成された画像に関する潜在的な誤用に関する懸念が持ち上がっている。
検査されたモデルの生成された画像をトレースするために,レイトタントトラッカーと呼ばれる潜時反転に基づく手法を提案する。
提案手法は,検査したモデルと他の画像から生成された画像とを高精度かつ効率的に識別できることを示す。
論文 参考訳(メタデータ) (2024-05-22T05:33:47Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusionは、無条件生成のために訓練された拡散モデルを用いたゼロショット条件画像生成のためのフレームワークである。
塗装,着色,テキスト誘導セマンティック編集,画像超解像などのタスクに対して,ステアリング拡散を用いた実験を行った。
論文 参考訳(メタデータ) (2023-09-30T02:03:22Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPM) は近年,条件付きおよび非条件付き画像生成において顕著な成果を上げている。
我々はGradPaintを紹介し、グローバルな一貫性のあるイメージに向けて世代を操る。
我々は、様々なデータセットで訓練された拡散モデルによく適応し、現在最先端の教師付きおよび教師なしの手法を改善している。
論文 参考訳(メタデータ) (2023-09-18T09:36:24Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
微調整の深層学習モデルは、分布内(ID)性能と分布外(OOD)堅牢性の間のトレードオフにつながる可能性がある。
そこで本研究では,マスク付き画像を対物サンプルとして用いて,ファインチューニングモデルのロバスト性を向上させる新しいファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-03-06T11:51:28Z) - Enhanced Controllability of Diffusion Models via Feature Disentanglement and Realism-Enhanced Sampling Methods [27.014858633903867]
拡散モデル(FDiff)の特徴分散のためのトレーニングフレームワークを提案する。
本稿では,拡散モデルの現実性を高め,制御性を高める2つのサンプリング手法を提案する。
論文 参考訳(メタデータ) (2023-02-28T07:43:00Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
本稿では,前処理に条件を導入することで,新しい条件拡散モデルを提案する。
いくつかのシフト規則に基づいて各条件に対して排他的拡散軌跡を割り当てるために、余剰潜在空間を用いる。
我々は textbfShiftDDPMs と呼ぶメソッドを定式化し、既存のメソッドの統一的な視点を提供する。
論文 参考訳(メタデータ) (2023-02-05T12:48:21Z) - DensePure: Understanding Diffusion Models towards Adversarial Robustness [110.84015494617528]
拡散モデルの特性を解析し,それらが証明された堅牢性を高める条件を確立する。
事前訓練されたモデル(すなわち分類器)の信頼性向上を目的とした新しいDensePure法を提案する。
このロバストな領域は多重凸集合の和であり、以前の研究で特定されたロバストな領域よりもはるかに大きい可能性が示されている。
論文 参考訳(メタデータ) (2022-11-01T08:18:07Z) - Improved Denoising Diffusion Probabilistic Models [4.919647298882951]
その結果,ddpmは高いサンプル品質を維持しつつ,競合的なログライク性を達成できることがわかった。
また,逆拡散過程の学習分散により,フォワードパスが桁違いに小さくサンプリングできることがわかった。
これらのモデルのサンプルの品質と可能性について,モデルのキャパシティとトレーニング計算でスムーズに拡張できることを示し,スケーラビリティを向上する。
論文 参考訳(メタデータ) (2021-02-18T23:44:17Z) - Granular Learning with Deep Generative Models using Highly Contaminated
Data [0.0]
品質問題のある実世界の画像データセット上で, 微粒な意味での異常検出のための深部生成モデルの最近の進歩を活用するためのアプローチを詳述する。
このアプローチは完全に教師なし(アノテーションは使用できない)だが、質的に画像の正確なセマンティックラベリングを提供するために示される。
論文 参考訳(メタデータ) (2020-01-06T23:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。