Optimizing UAV Aerial Base Station Flights Using DRL-based Proximal Policy Optimization
- URL: http://arxiv.org/abs/2504.03961v1
- Date: Fri, 04 Apr 2025 22:06:01 GMT
- Title: Optimizing UAV Aerial Base Station Flights Using DRL-based Proximal Policy Optimization
- Authors: Mario Rico Ibanez, Azim Akhtarshenas, David Lopez-Perez, Giovanni Geraci,
- Abstract summary: Unmanned aerial vehicle (UAV)-based base stations offer a promising solution in emergencies where the rapid deployment of cutting-edge networks is crucial for maximizing life-saving potential.<n>This paper introduces an automated reinforcement learning approach that enables UAVs to interact with their environment and determine optimal configurations.
- Score: 3.1376814250061544
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Unmanned aerial vehicle (UAV)-based base stations offer a promising solution in emergencies where the rapid deployment of cutting-edge networks is crucial for maximizing life-saving potential. Optimizing the strategic positioning of these UAVs is essential for enhancing communication efficiency. This paper introduces an automated reinforcement learning approach that enables UAVs to dynamically interact with their environment and determine optimal configurations. By leveraging the radio signal sensing capabilities of communication networks, our method provides a more realistic perspective, utilizing state-of-the-art algorithm -- proximal policy optimization -- to learn and generalize positioning strategies across diverse user equipment (UE) movement patterns. We evaluate our approach across various UE mobility scenarios, including static, random, linear, circular, and mixed hotspot movements. The numerical results demonstrate the algorithm's adaptability and effectiveness in maintaining comprehensive coverage across all movement patterns.
Related papers
- Aerial Reliable Collaborative Communications for Terrestrial Mobile Users via Evolutionary Multi-Objective Deep Reinforcement Learning [59.660724802286865]
Unmanned aerial vehicles (UAVs) have emerged as the potential aerial base stations (BSs) to improve terrestrial communications.<n>This work employs collaborative beamforming through a UAV-enabled virtual antenna array to improve transmission performance from the UAV to terrestrial mobile users.
arXiv Detail & Related papers (2025-02-09T09:15:47Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Meta Reinforcement Learning for Strategic IoT Deployments Coverage in
Disaster-Response UAV Swarms [5.57865728456594]
Unmanned Aerial Vehicles (UAVs) have grabbed the attention of researchers in academia and industry for their potential use in critical emergency applications.
These applications include providing wireless services to ground users and collecting data from areas affected by disasters.
UAVs' limited resources, energy budget, and strict mission completion time have posed challenges in adopting UAVs for these applications.
arXiv Detail & Related papers (2024-01-20T05:05:39Z) - Continual Meta-Reinforcement Learning for UAV-Aided Vehicular Wireless
Networks [29.89196067653312]
Unmanned aerial base stations (UABSs) can be deployed in vehicular wireless networks to support applications such as extended sensing via vehicle-to-everything (V2X) services.
A key problem in such systems is designing algorithms that can efficiently optimize the trajectory of the UABS in order to maximize coverage.
We propose the use of continual meta-RL as a means to transfer information from previously experienced traffic configurations to new conditions.
arXiv Detail & Related papers (2022-07-13T11:28:02Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - Path Design and Resource Management for NOMA enhanced Indoor Intelligent
Robots [58.980293789967575]
A communication enabled indoor intelligent robots (IRs) service framework is proposed.
Lego modeling method is proposed, which can deterministically describe the indoor layout and channel state.
The investigated radio map is invoked as a virtual environment to train the reinforcement learning agent.
arXiv Detail & Related papers (2020-11-23T21:45:01Z) - Multi-Agent Deep Reinforcement Learning Based Trajectory Planning for
Multi-UAV Assisted Mobile Edge Computing [99.27205900403578]
An unmanned aerial vehicle (UAV)-aided mobile edge computing (MEC) framework is proposed.
We aim to jointly optimize the geographical fairness among all the user equipments (UEs) and the fairness of each UAV's UE-load.
We show that our proposed solution has considerable performance over other traditional algorithms.
arXiv Detail & Related papers (2020-09-23T17:44:07Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.