Learning Accurate, Efficient, and Interpretable MLPs on Multiplex Graphs via Node-wise Multi-View Ensemble Distillation
- URL: http://arxiv.org/abs/2502.05864v1
- Date: Sun, 09 Feb 2025 11:55:14 GMT
- Title: Learning Accurate, Efficient, and Interpretable MLPs on Multiplex Graphs via Node-wise Multi-View Ensemble Distillation
- Authors: Yunhui Liu, Zhen Tao, Xiang Zhao, Jianhua Zhao, Tao Zheng, Tieke He,
- Abstract summary: Multiplex Graph Neural Networks (MGNNs) have achieved advanced performance in various downstream tasks.
We propose Multiplex Graph-Free Graph Neural Networks (MGFNNs) and MGFNN+ to combine MGNNs' superior performance and Neural Networks' efficient inference.
- Score: 29.70212915594676
- License:
- Abstract: Multiplex graphs, with multiple edge types (graph views) among common nodes, provide richer structural semantics and better modeling capabilities. Multiplex Graph Neural Networks (MGNNs), typically comprising view-specific GNNs and a multi-view integration layer, have achieved advanced performance in various downstream tasks. However, their reliance on neighborhood aggregation poses challenges for deployment in latency-sensitive applications. Motivated by recent GNN-to-MLP knowledge distillation frameworks, we propose Multiplex Graph-Free Neural Networks (MGFNN and MGFNN+) to combine MGNNs' superior performance and MLPs' efficient inference via knowledge distillation. MGFNN directly trains student MLPs with node features as input and soft labels from teacher MGNNs as targets. MGFNN+ further employs a low-rank approximation-based reparameterization to learn node-wise coefficients, enabling adaptive knowledge ensemble from each view-specific GNN. This node-wise multi-view ensemble distillation strategy allows student MLPs to learn more informative multiplex semantic knowledge for different nodes. Experiments show that MGFNNs achieve average accuracy improvements of about 10% over vanilla MLPs and perform comparably or even better to teacher MGNNs (accurate); MGFNNs achieve a 35.40$\times$-89.14$\times$ speedup in inference over MGNNs (efficient); MGFNN+ adaptively assigns different coefficients for multi-view ensemble distillation regarding different nodes (interpretable).
Related papers
- Teaching MLPs to Master Heterogeneous Graph-Structured Knowledge for Efficient and Accurate Inference [53.38082028252104]
We introduce HG2M and HG2M+ to combine both HGNN's superior performance and relational's efficient inference.
HG2M directly trains students with node features as input and soft labels from teacher HGNNs as targets.
HG2Ms demonstrate a 379.24$times$ speedup in inference over HGNNs on the large-scale IGB-3M-19 dataset.
arXiv Detail & Related papers (2024-11-21T11:39:09Z) - LOGIN: A Large Language Model Consulted Graph Neural Network Training Framework [30.54068909225463]
We aim to streamline the GNN design process and leverage the advantages of Large Language Models (LLMs) to improve the performance of GNNs on downstream tasks.
We formulate a new paradigm, coined "LLMs-as-Consultants," which integrates LLMs with GNNs in an interactive manner.
We empirically evaluate the effectiveness of LOGIN on node classification tasks across both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2024-05-22T18:17:20Z) - E2GNN: Efficient Graph Neural Network Ensembles for Semi-Supervised Classification [30.55931541782854]
This work studies ensemble learning for graph neural networks (GNNs) under the popular semi-supervised setting.
We propose an efficient ensemble learner--E2GNN to assemble multiple GNNs in a learnable way by leveraging both labeled and unlabeled nodes.
Comprehensive experiments over both transductive and inductive settings, across different GNN backbones and 8 benchmark datasets, demonstrate the superiority of E2GNN.
arXiv Detail & Related papers (2024-05-06T12:11:46Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - VQGraph: Rethinking Graph Representation Space for Bridging GNNs and
MLPs [97.63412451659826]
VQGraph learns a structure-aware tokenizer on graph data that can encode each node's local substructure as a discrete code.
VQGraph achieves new state-of-the-art performance on GNN-to-MLP distillation in both transductive and inductive settings.
arXiv Detail & Related papers (2023-08-04T02:58:08Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
This paper pinpoints the major source of GNNs' performance gain to their intrinsic capability, by introducing an intermediate model class dubbed as P(ropagational)MLP.
We observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts, while being much more efficient in training.
arXiv Detail & Related papers (2022-12-18T08:17:32Z) - AdaGNN: A multi-modal latent representation meta-learner for GNNs based
on AdaBoosting [0.38073142980733]
Graph Neural Networks (GNNs) focus on extracting intrinsic network features.
We propose boosting-based meta learner for GNNs.
AdaGNN performs exceptionally well for applications with rich and diverse node neighborhood information.
arXiv Detail & Related papers (2021-08-14T03:07:26Z) - Breaking the Limit of Graph Neural Networks by Improving the
Assortativity of Graphs with Local Mixing Patterns [19.346133577539394]
Graph neural networks (GNNs) have achieved tremendous success on multiple graph-based learning tasks.
We focus on transforming the input graph into a computation graph which contains both proximity and structural information.
We show that adaptively choosing between structure and proximity leads to improved performance under diverse mixing.
arXiv Detail & Related papers (2021-06-11T19:18:34Z) - On Graph Neural Networks versus Graph-Augmented MLPs [51.23890789522705]
Graph-Augmented Multi-Layer Perceptrons (GA-MLPs) first augments node features with certain multi-hop operators on the graph.
We prove a separation in expressive power between GA-MLPs and GNNs that grows exponentially in depth.
arXiv Detail & Related papers (2020-10-28T17:59:59Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.