LOGIN: A Large Language Model Consulted Graph Neural Network Training Framework
- URL: http://arxiv.org/abs/2405.13902v2
- Date: Thu, 6 Jun 2024 08:29:31 GMT
- Title: LOGIN: A Large Language Model Consulted Graph Neural Network Training Framework
- Authors: Yiran Qiao, Xiang Ao, Yang Liu, Jiarong Xu, Xiaoqian Sun, Qing He,
- Abstract summary: We aim to streamline the GNN design process and leverage the advantages of Large Language Models (LLMs) to improve the performance of GNNs on downstream tasks.
We formulate a new paradigm, coined "LLMs-as-Consultants," which integrates LLMs with GNNs in an interactive manner.
We empirically evaluate the effectiveness of LOGIN on node classification tasks across both homophilic and heterophilic graphs.
- Score: 30.54068909225463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent prevailing works on graph machine learning typically follow a similar methodology that involves designing advanced variants of graph neural networks (GNNs) to maintain the superior performance of GNNs on different graphs. In this paper, we aim to streamline the GNN design process and leverage the advantages of Large Language Models (LLMs) to improve the performance of GNNs on downstream tasks. We formulate a new paradigm, coined "LLMs-as-Consultants," which integrates LLMs with GNNs in an interactive manner. A framework named LOGIN (LLM Consulted GNN training) is instantiated, empowering the interactive utilization of LLMs within the GNN training process. First, we attentively craft concise prompts for spotted nodes, carrying comprehensive semantic and topological information, and serving as input to LLMs. Second, we refine GNNs by devising a complementary coping mechanism that utilizes the responses from LLMs, depending on their correctness. We empirically evaluate the effectiveness of LOGIN on node classification tasks across both homophilic and heterophilic graphs. The results illustrate that even basic GNN architectures, when employed within the proposed LLMs-as-Consultants paradigm, can achieve comparable performance to advanced GNNs with intricate designs. Our codes are available at https://github.com/QiaoYRan/LOGIN.
Related papers
- Can Large Language Models Act as Ensembler for Multi-GNNs? [6.387816922598151]
Graph Neural Networks (GNNs) have emerged as powerful models for learning from graph-structured data.
GNNs lack the inherent semantic understanding capability of rich textual nodesattributes, limiting their effectiveness in applications.
This research advances text-attributed graph ensemble learning by providing a robust, superior solution for integrating semantic and structural information.
arXiv Detail & Related papers (2024-10-22T08:48:52Z) - Language Models are Graph Learners [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, including Graph Neural Networks (GNNs) and Graph Transformers (GTs)
We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
This paper pinpoints the major source of GNNs' performance gain to their intrinsic capability, by introducing an intermediate model class dubbed as P(ropagational)MLP.
We observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts, while being much more efficient in training.
arXiv Detail & Related papers (2022-12-18T08:17:32Z) - Efficient and effective training of language and graph neural network
models [36.00479096375565]
We put forth an efficient and effective framework termed language model GNN (LM-GNN) to jointly train large-scale language models and graph neural networks.
The effectiveness in our framework is achieved by applying stage-wise fine-tuning of the BERT model first with heterogenous graph information and then with a GNN model.
We evaluate the LM-GNN framework in different datasets performance and showcase the effectiveness of the proposed approach.
arXiv Detail & Related papers (2022-06-22T00:23:37Z) - GNN-LM: Language Modeling based on Global Contexts via GNN [32.52117529283929]
We introduce GNN-LM, which extends the vanilla neural language model (LM) by allowing to reference similar contexts in the entire training corpus.
GNN-LM achieves a new state-of-the-art perplexity of 14.8 on WikiText-103.
arXiv Detail & Related papers (2021-10-17T07:18:21Z) - Optimization of Graph Neural Networks: Implicit Acceleration by Skip
Connections and More Depth [57.10183643449905]
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization.
We study the dynamics of GNNs by studying deep skip optimization.
Our results provide first theoretical support for the success of GNNs.
arXiv Detail & Related papers (2021-05-10T17:59:01Z) - Learning to Execute Programs with Instruction Pointer Attention Graph
Neural Networks [55.98291376393561]
Graph neural networks (GNNs) have emerged as a powerful tool for learning software engineering tasks.
Recurrent neural networks (RNNs) are well-suited to long sequential chains of reasoning, but they do not naturally incorporate program structure.
We introduce a novel GNN architecture, the Instruction Pointer Attention Graph Neural Networks (IPA-GNN), which improves systematic generalization on the task of learning to execute programs.
arXiv Detail & Related papers (2020-10-23T19:12:30Z) - A Collective Learning Framework to Boost GNN Expressiveness [25.394456460032625]
We consider the task of inductive node classification using Graph Neural Networks (GNNs) in supervised and semi-supervised settings.
We propose a general collective learning approach to increase the representation power of any existing GNN.
We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy.
arXiv Detail & Related papers (2020-03-26T22:07:28Z) - Efficient Probabilistic Logic Reasoning with Graph Neural Networks [63.099999467118245]
Markov Logic Networks (MLNs) can be used to address many knowledge graph problems.
Inference in MLN is computationally intensive, making the industrial-scale application of MLN very difficult.
We propose a graph neural network (GNN) variant, named ExpressGNN, which strikes a nice balance between the representation power and the simplicity of the model.
arXiv Detail & Related papers (2020-01-29T23:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.