Multi-granular Training Strategies for Robust Multi-hop Reasoning Over Noisy and Heterogeneous Knowledge Sources
- URL: http://arxiv.org/abs/2502.05944v1
- Date: Sun, 09 Feb 2025 16:06:43 GMT
- Title: Multi-granular Training Strategies for Robust Multi-hop Reasoning Over Noisy and Heterogeneous Knowledge Sources
- Authors: Jackson Coleman, Isaiah Lawrence, Benjamin Turner,
- Abstract summary: Multi-source multi-hop question answering (QA) represents a challenging task in natural language processing.
Existing methods often suffer from cascading errors, insufficient handling of knowledge conflicts, and computational inefficiency.
We propose Adaptive Multi-source Knowledge-Oriented Reasoning (AMKOR) to dynamically fuse parametric and retrieved knowledge.
- Score: 0.0
- License:
- Abstract: Multi-source multi-hop question answering (QA) represents a challenging task in natural language processing due to the need for dynamic integration of heterogeneous knowledge sources and multi-step reasoning. Existing methods often suffer from cascading errors, insufficient handling of knowledge conflicts, and computational inefficiency. In this paper, we propose Adaptive Multi-source Knowledge-Oriented Reasoning (AMKOR), a generative framework that leverages large language models (LLMs) to dynamically fuse parametric and retrieved knowledge while exploring reasoning trajectories using probabilistic beam reasoning. AMKOR is further enhanced by a multi-granular learning strategy, optimizing both local reasoning steps and global answer accuracy. Experiments conducted on four widely-used multi-hop QA datasets, including HotpotQA and MuSiQue, demonstrate that AMKOR achieves state-of-the-art performance, significantly outperforming baseline methods on both reasoning accuracy and robustness. Additional analyses confirm its scalability, adaptability to noisy knowledge, and superior ability to handle complex multi-hop tasks. This work establishes a new benchmark for multi-source multi-hop QA by effectively combining reasoning quality and efficiency.
Related papers
- Can MLLMs Reason in Multimodality? EMMA: An Enhanced MultiModal ReAsoning Benchmark [73.27104042215207]
We introduce EMMA, a benchmark targeting organic multimodal reasoning across mathematics, physics, chemistry, and coding.
EMMA tasks demand advanced cross-modal reasoning that cannot be addressed by reasoning independently in each modality.
Our evaluation of state-of-the-art MLLMs on EMMA reveals significant limitations in handling complex multimodal and multi-step reasoning tasks.
arXiv Detail & Related papers (2025-01-09T18:55:52Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
Multi-step multimodal reasoning tasks pose significant challenges for large language models (MLLMs)
We propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs.
We show that AR-MCTS can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning.
arXiv Detail & Related papers (2024-12-19T13:25:39Z) - An Entailment Tree Generation Approach for Multimodal Multi-Hop Question Answering with Mixture-of-Experts and Iterative Feedback Mechanism [14.479060028732803]
We argue that the current methods of multi-modal multi-hop question answering still mainly face two challenges.
The retrieved evidence containing a large amount of redundant information leads to a significant drop in performance.
The reasoning process without interpretable reasoning steps makes the model difficult to discover the logical errors for handling complex questions.
arXiv Detail & Related papers (2024-12-08T05:47:55Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [49.362750475706235]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question
Answering [35.40919477319811]
We propose a novel knowledge-aware approach that equips pre-trained language models with a multi-hop relational reasoning module.
It performs multi-hop, multi-relational reasoning over subgraphs extracted from external knowledge graphs.
It unifies path-based reasoning methods and graph neural networks to achieve better interpretability and scalability.
arXiv Detail & Related papers (2020-05-01T23:10:26Z) - Simultaneously Evolving Deep Reinforcement Learning Models using
Multifactorial Optimization [18.703421169342796]
This work proposes a framework capable of simultaneously evolving several DQL models towards solving interrelated Reinforcement Learning tasks.
A thorough experimentation is presented and discussed so as to assess the performance of the framework.
arXiv Detail & Related papers (2020-02-25T10:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.