Redefining Robot Generalization Through Interactive Intelligence
- URL: http://arxiv.org/abs/2502.05963v1
- Date: Sun, 09 Feb 2025 17:13:27 GMT
- Title: Redefining Robot Generalization Through Interactive Intelligence
- Authors: Sharmita Dey,
- Abstract summary: We argue that robot foundation models must evolve to an interactive multi-agent perspective in order to handle the complexities of real-time human-robot co-adaptation.
By moving beyond single-agent designs, our position emphasizes how foundation models in robotics can achieve a more robust, personalized, and anticipatory level of performance.
- Score: 0.0
- License:
- Abstract: Recent advances in large-scale machine learning have produced high-capacity foundation models capable of adapting to a broad array of downstream tasks. While such models hold great promise for robotics, the prevailing paradigm still portrays robots as single, autonomous decision-makers, performing tasks like manipulation and navigation, with limited human involvement. However, a large class of real-world robotic systems, including wearable robotics (e.g., prostheses, orthoses, exoskeletons), teleoperation, and neural interfaces, are semiautonomous, and require ongoing interactive coordination with human partners, challenging single-agent assumptions. In this position paper, we argue that robot foundation models must evolve to an interactive multi-agent perspective in order to handle the complexities of real-time human-robot co-adaptation. We propose a generalizable, neuroscience-inspired architecture encompassing four modules: (1) a multimodal sensing module informed by sensorimotor integration principles, (2) an ad-hoc teamwork model reminiscent of joint-action frameworks in cognitive science, (3) a predictive world belief model grounded in internal model theories of motor control, and (4) a memory/feedback mechanism that echoes concepts of Hebbian and reinforcement-based plasticity. Although illustrated through the lens of cyborg systems, where wearable devices and human physiology are inseparably intertwined, the proposed framework is broadly applicable to robots operating in semi-autonomous or interactive contexts. By moving beyond single-agent designs, our position emphasizes how foundation models in robotics can achieve a more robust, personalized, and anticipatory level of performance.
Related papers
- Human-Humanoid Robots Cross-Embodiment Behavior-Skill Transfer Using Decomposed Adversarial Learning from Demonstration [9.42179962375058]
We propose a transferable framework that reduces the data bottleneck by using a unified digital human model as a common prototype.
The model learns behavior primitives from human demonstrations through adversarial imitation, and complex robot structures are decomposed into functional components.
Our framework is validated on five humanoid robots with diverse configurations.
arXiv Detail & Related papers (2024-12-19T18:41:45Z) - $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Unifying 3D Representation and Control of Diverse Robots with a Single Camera [48.279199537720714]
We introduce Neural Jacobian Fields, an architecture that autonomously learns to model and control robots from vision alone.
Our approach achieves accurate closed-loop control and recovers the causal dynamic structure of each robot.
arXiv Detail & Related papers (2024-07-11T17:55:49Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - Multi-modal perception for soft robotic interactions using generative models [2.4100803794273]
Perception is essential for the active interaction of physical agents with the external environment.
The integration of multiple sensory modalities, such as touch and vision, enhances this process.
This paper introduces a perception model that harmonizes data from diverse modalities to build a holistic state representation.
arXiv Detail & Related papers (2024-04-05T17:06:03Z) - RoboCodeX: Multimodal Code Generation for Robotic Behavior Synthesis [102.1876259853457]
We propose a tree-structured multimodal code generation framework for generalized robotic behavior synthesis, termed RoboCodeX.
RoboCodeX decomposes high-level human instructions into multiple object-centric manipulation units consisting of physical preferences such as affordance and safety constraints.
To further enhance the capability to map conceptual and perceptual understanding into control commands, a specialized multimodal reasoning dataset is collected for pre-training and an iterative self-updating methodology is introduced for supervised fine-tuning.
arXiv Detail & Related papers (2024-02-25T15:31:43Z) - General-purpose foundation models for increased autonomy in
robot-assisted surgery [4.155479231940454]
This perspective article aims to provide a path toward increasing robot autonomy in robot-assisted surgery.
We argue that surgical robots are uniquely positioned to benefit from general-purpose models and provide three guiding actions toward increased autonomy in robot-assisted surgery.
arXiv Detail & Related papers (2024-01-01T06:15:16Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - Sensorimotor representation learning for an "active self" in robots: A
model survey [10.649413494649293]
In humans, these capabilities are thought to be related to our ability to perceive our body in space.
This paper reviews the developmental processes of underlying mechanisms of these abilities.
We propose a theoretical computational framework, which aims to allow the emergence of the sense of self in artificial agents.
arXiv Detail & Related papers (2020-11-25T16:31:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.