HARMONIC: Cognitive and Control Collaboration in Human-Robotic Teams
- URL: http://arxiv.org/abs/2409.18047v2
- Date: Wed, 05 Mar 2025 03:08:12 GMT
- Title: HARMONIC: Cognitive and Control Collaboration in Human-Robotic Teams
- Authors: Sanjay Oruganti, Sergei Nirenburg, Marjorie McShane, Jesse English, Michael K. Roberts, Christian Arndt, Sahithi Kamireddy,
- Abstract summary: This paper introduces HARMONIC, a cognitive-robotic architecture that integrates the OntoAgent cognitive framework with general-purpose robot control systems applied to human-robot teaming (HRT)<n>We also present a cognitive strategy for robots that incorporates metacognition, natural language communication, and explainability capabilities required for collaborative partnerships in HRT.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces HARMONIC, a cognitive-robotic architecture that integrates the OntoAgent cognitive framework with general-purpose robot control systems applied to human-robot teaming (HRT). We also present a cognitive strategy for robots that incorporates metacognition, natural language communication, and explainability capabilities required for collaborative partnerships in HRT. Through simulation experiments involving a joint search task performed by a heterogeneous team of a UGV, a drone, and a human operator, we demonstrate the system's ability to coordinate actions between robots with heterogeneous capabilities, adapt to complex scenarios, and facilitate natural human-robot communication. Evaluation results show that robots using the OntoAgent architecture within the HARMONIC framework can reason about plans, goals, and team member attitudes while providing clear explanations for their decisions, which are essential prerequisites for realistic human-robot teaming.
Related papers
- HACTS: a Human-As-Copilot Teleoperation System for Robot Learning [47.9126187195398]
We introduce HACTS (Human-As-Copilot Teleoperation System), a novel system that establishes bilateral, real-time joint synchronization between a robot arm and teleoperation hardware.
This simple yet effective feedback mechanism, akin to a steering wheel in autonomous vehicles, enables the human copilot to intervene seamlessly while collecting action-correction data for future learning.
arXiv Detail & Related papers (2025-03-31T13:28:13Z) - Human-Artificial Interaction in the Age of Agentic AI: A System-Theoretical Approach [0.0]
This paper presents a novel perspective on human-computer interaction (HCI), framing it as a dynamic interplay between human and computational agents.
A key distinction is made between multi-agent systems (MAS) and Centaurian systems, which represent two different paradigms of human-AI collaboration.
Our research has practical applications in autonomous robotics, human-in-the-loop decision making, and AI-driven cognitive architectures.
arXiv Detail & Related papers (2025-02-19T07:55:34Z) - Redefining Robot Generalization Through Interactive Intelligence [0.0]
We argue that robot foundation models must evolve to an interactive multi-agent perspective in order to handle the complexities of real-time human-robot co-adaptation.
By moving beyond single-agent designs, our position emphasizes how foundation models in robotics can achieve a more robust, personalized, and anticipatory level of performance.
arXiv Detail & Related papers (2025-02-09T17:13:27Z) - HARMONIC: A Framework for Explanatory Cognitive Robots [0.0]
We present HARMONIC, a framework for implementing cognitive robots.
The framework supports interoperability between a strategic (cognitive) layer for high-level decision-making and a tactical (robot) layer for low-level control and execution.
arXiv Detail & Related papers (2024-09-26T16:42:13Z) - Towards Human-Centered Construction Robotics: A Reinforcement Learning-Driven Companion Robot for Contextually Assisting Carpentry Workers [11.843554918145983]
This paper introduces a human-centered approach with a "work companion rover" designed to assist construction workers within their existing practices.
We conduct an in-depth study on deploying a robotic system in carpentry formwork, showcasing a prototype that emphasizes mobility, safety, and comfortable worker-robot collaboration.
arXiv Detail & Related papers (2024-03-27T23:55:02Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0 is a simulation platform for studying collaborative human-robot tasks in home environments.
It addresses challenges in modeling complex deformable bodies and diversity in appearance and motion.
Human-in-the-loop infrastructure enables real human interaction with simulated robots via mouse/keyboard or a VR interface.
arXiv Detail & Related papers (2023-10-19T17:29:17Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Generalizable Human-Robot Collaborative Assembly Using Imitation
Learning and Force Control [17.270360447188196]
We present a system for human-robot collaborative assembly using learning from demonstration and pose estimation.
The proposed system is demonstrated using a physical 6 DoF manipulator in a collaborative human-robot assembly scenario.
arXiv Detail & Related papers (2022-12-02T20:35:55Z) - CoGrasp: 6-DoF Grasp Generation for Human-Robot Collaboration [0.0]
We propose a novel, deep neural network-based method called CoGrasp that generates human-aware robot grasps.
In real robot experiments, our method achieves about 88% success rate in producing stable grasps.
Our approach enables a safe, natural, and socially-aware human-robot objects' co-grasping experience.
arXiv Detail & Related papers (2022-10-06T19:23:25Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
This paper presents several human-robot systems that utilize spatial computing to enable novel robot use cases.
The combination of spatial computing and egocentric sensing on mixed reality devices enables them to capture and understand human actions and translate these to actions with spatial meaning.
arXiv Detail & Related papers (2022-02-03T10:04:26Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIEN is a realistic and physics-rich simulated environment that hosts a large-scale set for articulated objects.
We evaluate state-of-the-art vision algorithms for part detection and motion attribute recognition as well as demonstrate robotic interaction tasks.
arXiv Detail & Related papers (2020-03-19T00:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.