A Comprehensive Survey on Image Signal Processing Approaches for Low-Illumination Image Enhancement
- URL: http://arxiv.org/abs/2502.05995v1
- Date: Sun, 09 Feb 2025 18:59:11 GMT
- Title: A Comprehensive Survey on Image Signal Processing Approaches for Low-Illumination Image Enhancement
- Authors: Muhammad Turab,
- Abstract summary: There is an increasing need for high-quality graphic information as people become more visually focused.
captured images frequently have poor visibility and a high amount of noise due to the limitations of image-capturing devices and lighting conditions.
Deep learning-based methods, however, have dominated recently made advances in this area.
- Score: 0.0
- License:
- Abstract: The usage of digital content (photos and videos) in a variety of applications has increased due to the popularity of multimedia devices. These uses include advertising campaigns, educational resources, and social networking platforms. There is an increasing need for high-quality graphic information as people become more visually focused. However, captured images frequently have poor visibility and a high amount of noise due to the limitations of image-capturing devices and lighting conditions. Improving the visual quality of images taken in low illumination is the aim of low-illumination image enhancement. This problem is addressed by traditional image enhancement techniques, which alter noise, brightness, and contrast. Deep learning-based methods, however, have dominated recently made advances in this area. These methods have effectively reduced noise while preserving important information, showing promising results in the improvement of low-illumination images. An extensive summary of image signal processing methods for enhancing low-illumination images is provided in this paper. Three categories are classified in the review for approaches: hybrid techniques, deep learning-based methods, and traditional approaches. Conventional techniques include denoising, automated white balancing, and noise reduction. Convolutional neural networks (CNNs) are used in deep learningbased techniques to recognize and extract characteristics from low-light images. To get better results, hybrid approaches combine deep learning-based methodologies with more conventional methods. The review also discusses the advantages and limitations of each approach and provides insights into future research directions in this field.
Related papers
- Leveraging Content and Context Cues for Low-Light Image Enhancement [25.97198463881292]
Low-light conditions have an adverse impact on machine cognition, limiting the performance of computer vision systems in real life.
We propose to improve the existing zero-reference low-light enhancement by leveraging the CLIP model to capture image prior and for semantic guidance.
We experimentally show, that the proposed prior and semantic guidance help to improve the overall image contrast and hue, as well as improve background-foreground discrimination.
arXiv Detail & Related papers (2024-12-10T17:32:09Z) - Semi-LLIE: Semi-supervised Contrastive Learning with Mamba-based Low-light Image Enhancement [59.17372460692809]
This work proposes a mean-teacher-based semi-supervised low-light enhancement (Semi-LLIE) framework that integrates the unpaired data into model training.
We introduce a semantic-aware contrastive loss to faithfully transfer the illumination distribution, contributing to enhancing images with natural colors.
We also propose novel perceptive loss based on the large-scale vision-language Recognize Anything Model (RAM) to help generate enhanced images with richer textual details.
arXiv Detail & Related papers (2024-09-25T04:05:32Z) - Inhomogeneous illumination image enhancement under ex-tremely low visibility condition [3.534798835599242]
Imaging through dense fog presents unique challenges, with essential visual information crucial for applications like object detection and recognition obscured, thereby hindering conventional image processing methods.
We introduce in this paper a novel method that adaptively filters background illumination based on Structural Differential and Integral Filtering (F) to enhance only vital signal information.
Our findings demonstrate that our proposed method significantly enhances signal clarity under extremely low visibility conditions and out-performs existing techniques, offering substantial improvements for deep fog imaging applications.
arXiv Detail & Related papers (2024-04-26T16:09:42Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
Low-light image enhancement (LLIE) aims to improve low-illumination images.
Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.
We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
arXiv Detail & Related papers (2024-04-08T07:34:39Z) - Revealing Shadows: Low-Light Image Enhancement Using Self-Calibrated
Illumination [4.913568097686369]
Self-Calibrated Illumination (SCI) is a strategy initially developed for RGB images.
We employ the SCI method to intensify and clarify details that are typically lost in low-light conditions.
This method of selective illumination enhancement leaves the color information intact, thus preserving the color integrity of the image.
arXiv Detail & Related papers (2023-12-23T08:49:19Z) - Designing An Illumination-Aware Network for Deep Image Relighting [69.750906769976]
We present an Illumination-Aware Network (IAN) which follows the guidance from hierarchical sampling to progressively relight a scene from a single image.
In addition, an Illumination-Aware Residual Block (IARB) is designed to approximate the physical rendering process.
Experimental results show that our proposed method produces better quantitative and qualitative relighting results than previous state-of-the-art methods.
arXiv Detail & Related papers (2022-07-21T16:21:24Z) - Lighting the Darkness in the Deep Learning Era [118.35081853500411]
Low-light image enhancement (LLIE) aims at improving the perception or interpretability of an image captured in an environment with poor illumination.
Recent advances in this area are dominated by deep learning-based solutions.
We provide a comprehensive survey to cover various aspects ranging from algorithm taxonomy to unsolved open issues.
arXiv Detail & Related papers (2021-04-21T19:12:19Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
Low-light images suffer from poor visibility caused by low contrast, color distortion and measurement noise.
This paper proposes a deep learning method for low-light image enhancement with a particular focus on handling the measurement noise.
The proposed method is very competitive to the state-of-the-art methods, and has significant advantage over others when processing images captured in extremely low lighting conditions.
arXiv Detail & Related papers (2020-07-04T06:26:44Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z) - Burst Denoising of Dark Images [19.85860245798819]
We propose a deep learning framework for obtaining clean and colorful RGB images from extremely dark raw images.
The backbone of our framework is a novel coarse-to-fine network architecture that generates high-quality outputs in a progressive manner.
Our experiments demonstrate that the proposed approach leads to perceptually more pleasing results than state-of-the-art methods.
arXiv Detail & Related papers (2020-03-17T17:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.