Universal point spread function engineering for 3D optical information processing
- URL: http://arxiv.org/abs/2502.06025v1
- Date: Sun, 09 Feb 2025 20:42:09 GMT
- Title: Universal point spread function engineering for 3D optical information processing
- Authors: Md Sadman Sakib Rahman, Aydogan Ozcan,
- Abstract summary: We report a method to synthesize an arbitrary set of spatially varying 3D PSFs between the input and output volumes of a spatially incoherent diffractive processor.
We rigorously analyze the PSF engineering capabilities of such diffractive processors within the diffraction limit of light.
Our framework and analysis would be important for future advancements in computational imaging, sensing and diffractive processing of 3D optical information.
- Score: 0.0
- License:
- Abstract: Point spread function (PSF) engineering has been pivotal in the remarkable progress made in high-resolution imaging in the last decades. However, the diversity in PSF structures attainable through existing engineering methods is limited. Here, we report universal PSF engineering, demonstrating a method to synthesize an arbitrary set of spatially varying 3D PSFs between the input and output volumes of a spatially incoherent diffractive processor composed of cascaded transmissive surfaces. We rigorously analyze the PSF engineering capabilities of such diffractive processors within the diffraction limit of light and provide numerical demonstrations of unique imaging capabilities, such as snapshot 3D multispectral imaging without involving any spectral filters, axial scanning or digital reconstruction steps, which is enabled by the spatial and spectral engineering of 3D PSFs. Our framework and analysis would be important for future advancements in computational imaging, sensing and diffractive processing of 3D optical information.
Related papers
- Multiplane Quantitative Phase Imaging Using a Wavelength-Multiplexed Diffractive Optical Processor [11.382198495580127]
We present a 3D stack of phase-only objects using a wavelength-multiplexed diffractive optical processor.
We show that our diffractive processor could simultaneously achieve all-optical quantitative phase imaging across several distinct axial planes at the input.
arXiv Detail & Related papers (2024-03-16T22:49:47Z) - SpectralGPT: Spectral Remote Sensing Foundation Model [60.023956954916414]
A universal RS foundation model, named SpectralGPT, is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT)
Compared to existing foundation models, SpectralGPT accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS big data.
Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS big data applications within the field of geoscience.
arXiv Detail & Related papers (2023-11-13T07:09:30Z) - SSIF: Learning Continuous Image Representation for Spatial-Spectral
Super-Resolution [73.46167948298041]
We propose a neural implicit model that represents an image as a function of both continuous pixel coordinates in the spatial domain and continuous wavelengths in the spectral domain.
We show that SSIF generalizes well to both unseen spatial resolutions and spectral resolutions.
It can generate high-resolution images that improve the performance of downstream tasks by 1.7%-7%.
arXiv Detail & Related papers (2023-09-30T15:23:30Z) - Anti-Aliased Neural Implicit Surfaces with Encoding Level of Detail [54.03399077258403]
We present LoD-NeuS, an efficient neural representation for high-frequency geometry detail recovery and anti-aliased novel view rendering.
Our representation aggregates space features from a multi-convolved featurization within a conical frustum along a ray.
arXiv Detail & Related papers (2023-09-19T05:44:00Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects.
We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets.
arXiv Detail & Related papers (2023-08-21T10:38:32Z) - Longwave infrared multispectral image sensor system using
aluminum-germanium plasmonic filter arrays [0.8081564951955755]
A multispectral camera records image data in various wavelengths across the electromagnetic spectrum to acquire additional information that a conventional camera fails to capture.
We experimentally demonstrate an LWIR multispectral image sensor with three wavelength bands using optical elements made of an aluminum-based plasmonic filter array sandwiched in germanium.
Our work demonstrates a versatile spectral thermography technique for detecting target signatures in the LWIR range and other advanced spectral analyses.
arXiv Detail & Related papers (2023-03-03T01:47:32Z) - PREF: Phasorial Embedding Fields for Compact Neural Representations [54.44527545923917]
We present a phasorial embedding field emphPREF as a compact representation to facilitate neural signal modeling and reconstruction tasks.
Our experiments show PREF-based neural signal processing technique is on par with the state-of-the-art in 2D image completion, 3D SDF surface regression, and 5D radiance field reconstruction.
arXiv Detail & Related papers (2022-05-26T17:43:03Z) - D$^\text{2}$UF: Deep Coded Aperture Design and Unrolling Algorithm for
Compressive Spectral Image Fusion [22.0246327137227]
This paper presents the fusion of the compressive measurements of a low-spatial high-spectral resolution coded aperture snapshot spectral imager (CASSI) architecture and a high-spatial low-spectral resolution multispectral color filter array (MCFA) system.
Unlike previous CSIF works, this paper proposes joint optimization of the sensing architectures and a reconstruction network in an end-to-end (E2E) manner.
arXiv Detail & Related papers (2022-05-24T15:39:34Z) - Disentangling Light Fields for Super-Resolution and Disparity Estimation [67.50796924758221]
Light field (LF) cameras record both intensity and directions of light rays, and encode 3D scenes into 4D LF images.
It is challenging for convolutional neural networks (CNNs) to process LF images since the spatial and angular information are highly inter-twined with varying disparities.
We propose a generic mechanism to disentangle these coupled information for LF image processing.
arXiv Detail & Related papers (2022-02-22T01:04:41Z) - Learning an optimal PSF-pair for ultra-dense 3D localization microscopy [33.20228745456316]
A long-standing challenge in multiple-particle-tracking is the accurate and precise 3D localization of individual particles at close proximity.
One established approach for snapshot 3D imaging is point-spread-function (PSF) engineering, in which the PSF is modified to encode the axial information.
Here we suggest using multiple PSFs simultaneously to help overcome this challenge, and investigate the problem of engineering multiple PSFs for dense 3D localization.
arXiv Detail & Related papers (2020-09-29T20:54:52Z) - Learning Wavefront Coding for Extended Depth of Field Imaging [4.199844472131922]
Extended depth of field (EDoF) imaging is a challenging ill-posed problem.
We propose a computational imaging approach for EDoF, where we employ wavefront coding via a diffractive optical element.
We demonstrate results with minimal artifacts in various scenarios, including deep 3D scenes and broadband imaging.
arXiv Detail & Related papers (2019-12-31T17:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.