CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis
- URL: http://arxiv.org/abs/2504.19223v1
- Date: Sun, 27 Apr 2025 13:06:40 GMT
- Title: CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis
- Authors: Alexander Baumann, Leonardo Ayala, Silvia Seidlitz, Jan Sellner, Alexander Studier-Fischer, Berkin Ă–zdemir, Lena Maier-Hein, Slobodan Ilic,
- Abstract summary: Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding.<n> variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies.<n>We introduce $textbfCARL$, a model for $textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$ across RGB, multispectral, and hyperspectral imaging modalities.
- Score: 75.25966323298003
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding, and is already established as a critical modality in remote sensing. However, variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies, leading to camera-specific models with limited generalizability and inadequate cross-camera applicability. To address this bottleneck, we introduce $\textbf{CARL}$, a model for $\textbf{C}$amera-$\textbf{A}$gnostic $\textbf{R}$epresentation $\textbf{L}$earning across RGB, multispectral, and hyperspectral imaging modalities. To enable the conversion of a spectral image with any channel dimensionality to a camera-agnostic embedding, we introduce wavelength positional encoding and a self-attention-cross-attention mechanism to compress spectral information into learned query representations. Spectral-spatial pre-training is achieved with a novel spectral self-supervised JEPA-inspired strategy tailored to CARL. Large-scale experiments across the domains of medical imaging, autonomous driving, and satellite imaging demonstrate our model's unique robustness to spectral heterogeneity, outperforming on datasets with simulated and real-world cross-camera spectral variations. The scalability and versatility of the proposed approach position our model as a backbone for future spectral foundation models.
Related papers
- Hyperspectral Vision Transformers for Greenhouse Gas Estimations from Space [6.559887989252469]
This study proposes a spectral transformer model that synthesizes hyperspectral data from multispectral inputs.<n>The model is pre-trained via a band-wise masked auto-encoder and subsequently fine-tuned on aligned multispectral-hyperspectral image pairs.<n>The resulting synthetic hyperspectral data retain the spatial and temporal benefits of multispectral imagery and improve GHG prediction accuracy.
arXiv Detail & Related papers (2025-04-23T16:19:42Z) - SpecTf: Transformers Enable Data-Driven Imaging Spectroscopy Cloud Detection [0.7139158700911061]
SpecTf is a spectroscopy-specific deep learning architecture that performs cloud detection using only spectral information.<n>By treating spectral measurements as sequences rather than image channels, SpecTf learns fundamental physical relationships without relying on spatial context.<n>We present SpecTf's potential for cross-instrument generalization by applying it to a different instrument on a different platform without modifications.
arXiv Detail & Related papers (2025-01-09T02:14:12Z) - Unleashing Correlation and Continuity for Hyperspectral Reconstruction from RGB Images [64.80875911446937]
We propose a Correlation and Continuity Network (CCNet) for HSI reconstruction from RGB images.
For the correlation of local spectrum, we introduce the Group-wise Spectral Correlation Modeling (GrSCM) module.
For the continuity of global spectrum, we design the Neighborhood-wise Spectral Continuity Modeling (NeSCM) module.
arXiv Detail & Related papers (2025-01-02T15:14:40Z) - Correlation Hyperspectral Imaging [0.0]
Hyperspectral imaging aims at providing information on both the spatial and the spectral distribution of light, with high resolution.
We address this limitation by exploiting light intensity correlations, which are shown to enable overcoming the typical downsides of traditional hyperspectral imaging techniques.
The enabled combination of high spatial and spectral resolution, high speed, and insensitivity to undesired spectral features shall lead to a paradigm change in hyperspectral imaging devices.
arXiv Detail & Related papers (2024-07-18T19:54:44Z) - HTD-Mamba: Efficient Hyperspectral Target Detection with Pyramid State Space Model [5.505983410956103]
Hyperspectral target detection (HTD) identifies objects of interest from complex backgrounds at the pixel level.
This paper proposes an efficient self-supervised HTD method with a pyramid state space model (SSM), named HTD-Mamba.
Experiments conducted on four public datasets demonstrate that the proposed method outperforms state-of-the-art methods in both quantitative and qualitative evaluations.
arXiv Detail & Related papers (2024-07-09T13:21:26Z) - SpectralGPT: Spectral Remote Sensing Foundation Model [60.023956954916414]
A universal RS foundation model, named SpectralGPT, is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT)
Compared to existing foundation models, SpectralGPT accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS big data.
Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS big data applications within the field of geoscience.
arXiv Detail & Related papers (2023-11-13T07:09:30Z) - SSIF: Learning Continuous Image Representation for Spatial-Spectral
Super-Resolution [73.46167948298041]
We propose a neural implicit model that represents an image as a function of both continuous pixel coordinates in the spatial domain and continuous wavelengths in the spectral domain.
We show that SSIF generalizes well to both unseen spatial resolutions and spectral resolutions.
It can generate high-resolution images that improve the performance of downstream tasks by 1.7%-7%.
arXiv Detail & Related papers (2023-09-30T15:23:30Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Unsupervised Spectral Demosaicing with Lightweight Spectral Attention
Networks [6.7433262627741914]
This paper presents a deep learning-based spectral demosaicing technique trained in an unsupervised manner.
The proposed method outperforms conventional unsupervised methods in terms of spatial distortion suppression, spectral fidelity, robustness, and computational cost.
arXiv Detail & Related papers (2023-07-05T02:45:44Z) - High Spectral Spatial Resolution Synthetic HyperSpectral Dataset form
multi-source fusion [7.249349307341409]
This research paper introduces a synthetic hyperspectral dataset that combines high spectral and spatial resolution imaging.
The proposed dataset addresses this limitation by leveraging three modalities: RGB, push-broom visible hyperspectral camera, and snapshot infrared hyperspectral camera.
arXiv Detail & Related papers (2023-06-25T11:17:12Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.